
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ
«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ

імені ІГОРЯ СІКОРСЬКОГО»

І.А. Терейковський,
О.Г. Корченко,
В.В. Погорелов

РОЗПІЗНАВАННЯ
КОМП’ЮТЕРНИХ

ВІРУСІВ

Навчальний посібник

Рекомендовано Методичною радою КПІ ім. Ігоря Сікорського
як навчальний посібник для здобувачів ступеня бакалавр

за освітньою програмою «Системне програмування та спеціалізовані комп’ютерні
системи»

спеціальності 123 Комп’ютерна інженерія

Електронне мережне навчальне видання

Київ
КПІ ім. Ігоря Сікорського

2022

Рецензент Толюпа С. В. доктор технічних наук, професор,
професор кафедри кібербезпеки та захисту інформації факультету
інформаційних технологій Київський національний університет
імені Тараса Шевченка

Відповідальний
редактор Тарасенко В.П., доктор технічних наук, професор

Гриф надано Методичною радою КПІ ім. Ігоря Сікорського
(протокол № Х від DD.MM.YYYY р.)

за поданням Вченої ради факультету прикладної математики
(протокол № 1 від 01.09.2022 р.)

Навчальний посібник містить матеріали для самостійної роботи здобувачів ступеня
бакалавр за освітньою програмою «Системне програмування та спеціалізовані
комп’ютерні системи» спеціальності 123 «Комп’ютерна інженерія» при вивченні розділу
«Розпізнавання шкідливого програмного забезпечення» з дисципліни «Методи
розпізнавання кібератак». Також стане у нагоді розробникам програмного забезпечення,
аспірантам та студентам технічних снеціальностей.

Реєстр. № НП ХХ/ХХ-ХХХ. Обсяг Х,Х авт. арк.

Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського»

проспект Перемоги, 37, м. Київ, 03056
https://kpi.ua

Свідоцтво про внесення до Державного реєстру видавців, виготовлювачів
і розповсюджувачів видавничої продукції ДК № 5354 від 25.05.2017 р.

 І. А. Терейковський, О. Г. Корченко, В. В. Погорелов
 КПІ ім. Ігоря Сікорського, 2022

2

ЗМІСТ

Список умовних скорочень 5

Вступ 6

1 АНАЛІЗ НЕЙРОМЕРЕЖЕВИХ ЗАСОБІВ РОЗПІЗНАВАННЯ

КОМП’ЮТЕРНИХ ВІРУСІВ

7

1.1 Науково-практична задача розпізнавання Windows-орієнтованих

комп’ютерних вірусів

7

1.2 Характеристика сучасних типів нейромережевих моделей 11

1.3 Аналіз нейромережевих моделей та методів розпізнавання

комп’ютерних вірусів

17

1.4 Шляхи вдосконалення нейромережевих засобів розпізнавання

комп’ютерних вірусів

24

2 ЕЛЕМЕНТИ МЕТОДОЛОГІЧНОЇ БАЗИ НЕЙРОМЕРЕЖЕВОГО

РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ

28

2.1 Концептуальна модель забезпечення ефективності

нейромережевого розпізнавання комп’ютерних вірусів

28

2.2 Принципы використання глибоких нейронних мереж 36

2.3 Модель правил визначення ефективних видів глибоких нейронних

мереж

39

3 НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ТА МЕТОДИ РОЗПІЗНАВАННЯ

КОМП’ЮТЕРНИХ ВІРУСІВ

57

3.1 Модель формування параметрів навчальних прикладів глибокої

нейронної мережі

57

3.2 Метод визначення архітектурних параметрів глибокої нейронної

мережі

77

3.3 Метод нейромережевого розпізнавання комп’ютерних вірусів 87

4 НЕЙРОМЕРЕЖЕВА СИСТЕМА РОЗПІЗНАВАННЯ

КОМП'ЮТЕРНИХ ВІРУСІВ ТА ЕКСПЕРИМЕНТАЛЬНІ

ДОСЛІДЖЕННЯ

92

4.1 Архітектура нейромережевої системи 92

4.2 Експериментальне дослідження методу визначення архітектурних 104

3

параметрів глибокої нейронної мережі

4.3 Оцінка ефективності методу нейромережевого розпізнавання

комп’ютерних вірусів

109

Список використаних джерел 117

4

Список умовних скорочень

API – application programming interface (прикладний програмний інтерфейс)

CPU – central processing unit (центральний процесор)

БШП – багатошаровий персептрон

ВШ – вхідний шар

ГНМ – глибока нейронна мережа

ГС – голосовий сигнал

ДШП – двохшаровий персептрон

ЗНМ – згорткова нейронна мережа

ІС – інформаційна система

МЗР – мережа зустрічного розповсюдження

НМ – нейронна мережа

НМЗ – нейромережевий засіб

НММ – нейромережева модель

НМС – нейромережева система

ОС – операційна система

ПЗ – програмне забезпечення

САЗ – системи антивірусного захисту

5

ВСТУП

Навчальний посібник присвячено опису підходів до вирішення

актуальної науково-прикладної задачі розробки ефективних нейромережевих

моделей та методів розпізнавання комп’ютерних вірусів, адаптованих до

умов вітчизняних систем антивірусного захисту. Обґрунтовано, що:

Проведені дослідження дозволяють зробити наступні висновки:

- Важливим напрямком розвитку систем антивірусного захисту є

впровадження нейромережевих моделей розпізнавання комп’ютерних

вірусів, що базуються на сучасних рішеннях теорії штучних нейронних

мереж. Для цього необхідно розвинути методологічну базу і розробити

відповідні нейромережеві методи, адаптовані до очікуваних умов

застосування.

- Розвиток методологічної бази нейромережевого розпізнавання

комп’ютерних вірусів за рахунок розроблених принципів та моделей

забезпечує можливість створення ефективних нейромережевих методів

розпізнавання комп’ютерних вірусів.

- Запропонований метод проектування архітектури глибокої нейронної

мережі, призначеної для розпізнавання вірусів, який за рахунок використання

запропонованих елементів методологічної бази дозволяє визначити

архітектурні параметри, що забезпечують пристосованість такої мережі до

очікуваних умов застосування. Показано, що використання розробленого

методу проектування дозволяє приблизно в 1,5 рази зменшити

обчислювальні витрати, пов’язані з визначенням значень архітектурних

параметрів глибокої нейронної мережі, призначеної для розпізнавання

вірусів.

- Запропонований метод нейромережевого розпізнавання

комп’ютерних вірусів, який за рахунок використання запропонованих

елементів методологічної бази та запропонованого методу проектування

архітектури глибокої нейронної мережі, забезпечує достатню похибку

розпізнавання при різних умовах застосування з врахуванням обмежень щодо

створення навчальної вибірки та обмежень щодо обчислювальних ресурсів

6

системи антивірусного захисту. Показано, що його ефективність приблизно

в 1,14 рази вища, ніж у подібних методів розпізнавання.

7

РОЗДІЛ 1. АНАЛІЗ НЕЙРОМЕРЕЖЕВИХ ЗАСОБІВ

РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ

1.1. Науково-практична задача розпізнавання комп’ютерних вірусів

В теперішній час в умовах глобалізації інформаційних процесів,

входження України до світового інформаційного простору та потужної

інформаційної експансії з боку інших держав, особливої гостроти набувають

задачі, пов’язані із забезпеченням інформаційної безпеки держави [79-81].

Одним із основних напрямків вирішення цих задач є створення методів та

засобів протидії комп’ютерним вірусам, покликаних попереджувати

пошкодження державних інформаційних ресурсів [84]. Хоча

використовуються такі методи та засоби вже не одне десятиліття, їх

розробкою та створенням методологічної бази займаються

висококваліфіковані фахівці, проте практичний досвід і результати багатьох

науково-практичних досліджень вказують на наявність в сучасних

антивірусах суттєвих недоліків [84]. Основним з них є недостатня точність

розпізнавання всієї номенклатури комп’ютерних вірусів, що підтверджується

відомими випадками успішних вірусних кібератак на інформаційні ресурси

вітчизняних державних установ. Разом з тим впровадження відомих засобів

розпізнавання комп’ютерних вірусів в систему інформаційної безпеки

держави викликає необхідність їх складної адаптації до очікуваних умов

використання [77]. Зазначимо, що відповідно до вітчизняних та міжнародних

нормативних документів в області захисту інформації під поняттям

комп’ютерного вірусу розуміють програму, що володіє здатністю до

самовідтворення і, як правило, здатна здійснювати дії, які можуть порушити

функціонування КС і/або зумовити порушення політики безпеки [81].

При цьому вважається, що комп'ютерний вірус може порушувати

цілісність інформації, програмне забезпечення та (чи) режим роботи

обчислювальної техніки. Також більшість досліджень вказують на те, що

основним завданням розробки систем протидії комп’ютерним вірусам є

розпізнавання.

8

Методи розпізнавання комп’ютерних вірусів можуть бути розділені на 2

класи [1-2, 4]:

1. Методи, засновані на сигнатурах.

2. Методи, засновані на виявленні аномалій.

У більшості сучасних антивірусах центральне місце займає

сигнатурний підхід. Він дає 100% точність виявлення вже відомих віруси, але

не дозволяє розпізнати ті віруси сигнатури яких невідомі. Аномальний підхід

навпаки дозволяє виявляти віруси з невідомими сигнатурами, однак його

негативною рисою є висока ймовірність хибних спрацювань. Найчастіше

аномальні методи базуються на використанні еврістичних правил. Існує

чимало таких методів [3], але останнім часом найбільший потенціал

представляють методи, які використовують машинне навчання. Аномальні

методи виявляють вірус, використовуючи параметри, що характеризують

відмінності функціонування програми від специфікації, що характерна для її

нормальної поведінки. Переваги та недоліки сигнатурного аналізу:

 1. Дозволяє визначати конкретний вірус з високою точністю і малою

часткою помилкових спрацьовувань.

2. Малоефективний для розпізнавання поліморфних вірусів.

 3. Вимагає регулярного і оперативного оновлення бази сигнатур.

4. Для реакції на невідомі віруси потрібні експертні правила, створення

яких вимагає ручного аналізу вірусів і виділення сигнатур.

5. Нездатний виявити нові типи вірусів.

6. Для розпізнавання різних версії одного і того ж вірусу необхідні різні

сигнатури.

7. З урахуванням великого обсягу бази сигнатур величезна, сигнатурний

аналіз є достатньо ресурсоємною операцією.

Переваги та недоліки аномального методу виявлення комп’ютерних

вірусів:

1. Можливість виявлення раніше невідомих вірусів (вірусів нульового

дня (zero-day viruses)).

2. Висока ймовірність помилкових спрацьовувань, тобто таких при яких

легітимне програмне забезпечення буде розпізнане, як вірус.

9

3. Висока складність навчання.

4. Для вже навченої системи аналіз виконується порівняно швидко

І сигнатурні і аномальні методи можуть використовувати три різних

підходи для виявлення вірусів:

1. Статичний підхід. Використовуючи цей підхід, підозріла програма

аналізується статично (тобто без запуску самої програми), як звичайний

файл.

2. Динамічний підхід. При цьому підході, підозріла програма

аналізується динамічно, тобто під час її виконання в реальному часі.

3. Гібридний підхід. Об'єднання статичного і динамічного підходів в

різних частинах аналізу шкідливої програми.

Створення класифікатора для виявлення вірусів умовно можна

розділити на три стадії:

1. Формування простору ознак опису файлу (features extraction).

Результатом цієї стадії є вектор, що містить прізнаковие характеристики

даного об'єкту. У задачі побудови класифікатора статичного виявлення вірусів

ознаками можуть виступати наступні об'єкти:

- Рядки - виконуваний файл розглядається як звичайна рядок або

послідовність рядків. Ознаки - числові характеристики рядків (наприклад,

частота нулів в підрядку);

- Структурні елементи файлу, що виконується. Для Windows-

орієнтованих систем, це стосується PE-файлів (Portable Executable). Ознаки,

витягнуті з структурної інформації можуть бути наступними: сертифікат,

date/time stamp, інформація компонувальника, тип CPU, логічна інформація

(вирівнювання секцій, розмір, секції коду, налагоджувальні прапори),

інформація про імпорт (список тих DLL, які використовує виконуваний

файл), інформація про експорт (функції які надає PE-файл іншим програмам),

таблиця релокацій (переміщень) директорії ресурсів.

- N-грами на рівні байт. Сегменти послідовних байт з різних місць

всередині виконуваного файлу довжини N. Кожна N-грами розглядається як

ознака.

- N-грами на рівні опкодов. Мається на увазі, що опкод (opcode -

10

operation code) - специфічний для CPU операційний код, який виконує

спеціальну машинну команду (наприклад, mov, push, add).

2. Вибір ознак (feature selection). Протягом цієї фази вектор, створений

на першій стаді обчислюється, а надлишкові і нерелевантні ознаки

викидаються з розгляду. Реалізація цієї стадії дозволяє збільшити

ефективність процесу навчання моделі за рахунок скорочення кількості

необхідних операцій і, як наслідок, збільшення швидкості навчання,

підвищити узагальнюючі здатності за рахунок скорочення розмірності

простору ознак, підвищити якість інтерпретації навчання. Завдання цієї стадії

полягає в тому, щоб з вже виявлених ознак вибрати найбільш значимі

(інформативні). Існує декілька підходів до виділення інформативності ознак.

Найбільш популярними є кореляційні методи [10, 19].

3. Побудова математичної моделі, класифікатора, який використовує

вектор ознак, отриманий на попердній стадії. Для побудови класифікатора

можуть використовуватися такі підходи: дерева рішень, випадковий ліс,

метод найшвидшого бустінгу, логістична регресія, метод опорних векторів,

метод k-найближчих сусідів, метод адаптивного бустингу, наївний Байес,

нейронні мережі. Враховуючи останні досягнення в області теорії НМ

найбільшу перспективу мають класифікатори на їх основі.

Практичний досвід та результати [30] вказують на те, що в сучасних

умовах однією із найбільш актуальних є задача розпізнавання пліморфних та

зашифрованих вірусів при створенні яких використовується технологія

обфускації програмного коду. Зазначимо, що обфускація це приведення

виконуваного коду або вихідного тексту програми до виду, який зберігає її

функціональність, але ускладнює розуміння, аналіз алгоритмів роботи, а

також модифікацію при декомпіляції. Легітимною підставою для

використання процедури обфускації є те, що ця технологія використовується

і для безпечних програм з метою забезпечення дотримання авторських прав.

Обфускований програмний код мало придатний для аналізу в

антивірусних засобах, а тому виникає необхідність реалізації процедури

деобфускації. Тобто необхідно перевести обфускований програмний код до

вигляду, що придатний для аналізу. Методів деобфускації достатньо багато.

11

Базуються вони на різних підходах і мають різні можливості і різну ступінь

ефективності. Одним із найбільш сучасних є підхід на основі аналізу графу

виконання програм. До переваг цього підходу слід віднести його

універсальність та інтерпретованість результатів виконання.

 1.2. Характеристика сучасних типів нейромережевих моделей

Більшість сучасних типів НММ в певному сенсі є розвитком

двохшарового персептрону, що представляє собою НМ з прямим

поширенням сигналу, для навчання якої використовується методи котрі

базуються на алгоритмі зворотнього поширення помилки [104-106].

Структура двохшарового персептрону показана на рис. 1.2.1.

Рис. 1.2.1. Структура двохшарового персептрону

На рис. 1.2.1 символом X позначено вектор вхідних параметрів,

символом W матриця вагових коефіцієнтів, а символом Y вектор вихідних

параметрів. Вхідним нейронам двохшарового персептрону притаманна

лінійна функція активації виду (1.2.1), а схованим та вихідним нейронам –

сигмоїд або гіперболічний тангенс, що задаються виразами (1.2.2, 1.2.3). Для

розрахунку у виразах (1.2.1-1.2.3) сумарного вхідного сигналу

використовується вираз (1.2.4)

F(NET)=NET×a , (1.2.1)

F(NET)=
1

1+e−a×NET
, (1.2.2)

12

F(NET)=
ea×NET

−e−a×NET

ea×NET+e−a×NET
, (1.2.3)

NET=∑
i=0

K

x iw i
, (1.2.4)

де K  кількість вхідних зв'язків нейрону, xi  величина i-го зв'язку, wi 

вага i-го зв'язку, NET - вхідний сигнал нейрону

Основою сучасних НММ є так звана глибока нейронна мережа (DNN),

класична структура якої наведена на рис. 1.2.2. [101].

Рис. 1.2.2. Структура глибокої нейронної мережі з прямим розповсюдженням сигналу

На відміну від двохшарового персептрону в DNN кількість схованих

шарів більша за 1. Крім того, особливістю DNN є використання в схованих та

вихідних нейронах функції активації типу ReLU:

Y(X)=max(0,X), (1.2.5)

де Y – вихідний сигнал нейрону, X – сумарний вхідний сигнал нейрону.

При цьому сумарний вхідний сигнал нейрону розраховується за

допомогою (1.2.4).

В деяких випадках у вихідних нейронах використовується функція

активації типу Softmax:

13

Y (z)i=
ezi

∑
k=1

K

ezk

,
(1.2.6)

Для визначення ефективності ГНМ традиційно використовуються

показники точності та втрат, що визначаються виразами:

 A=N right /N , (1.2.7)

L=N−1∑
t=1

N

eT (t ,Q) W (θ) e (t ,Q)
, (1.2.8)

де Nright - кількість прикладів, що розпізнані правильно, N - загальна

кількість прикладів, e(t, Q) - вектор помилки в момент часу t, ny - кількість

виходів нейроної мережі, W(Q) – матриця вагових коефіцієнтів.

Однією із найбільш апробованих модифікацій DNN є згорткова

нейронна мережа (ЗНМ), базова структура якої показана на рис. 1.2.3. На

відміну від класичної DNN ЗНМ пристосована до розпізнавання кольорових

зображень, що дозволяє застосовувати її у випадках для класифікації образів,

коли важливою є топологія даних. Найбільш відомими різновидами ЗНМ

являються LeNet-5, MobileNet, SqueezeNet, VGG16, AlexNet, GoogleNet та

інші. Крім врахування топології до основних переваг ЗНМ щодо

повнозв’язних ГНМ відносять знано меншу кількість вагових коефіцієнтів

НМ, що позитивно відображається на ресурсоємності НМЗ.

 Рис. 1.2.3. Структурна схема згорткової нейронної мережі з прямим розповсюдженням

сигналу типу LeNet-5

14

В класичних ЗНМ типу LeNet-5 кількість вихідних нейронів дорівнює

кількості розпізнаваних образів. Структура прихованих нейронних шарів

підбирається емпірично. Сумарний вхідний сигнал деякого нейрона шару

згортки розраховується так:

,
(1.2.9)

де xk
(i , j) - вхідний сигнал (i, j) -го нейрону k-ої карти ознак, x0,k -

зміщення кожного з нейронів k-ої карти ознак, К - розмір рецептивної області

нейрону (розмір ядра згортки), wk,s,t - ваговий коефіцієнт (s, t)-го

синаптичного зв'язку нейрона k-ої карти ознак, x - вихід нейрону

попереднього шару.

Вихідний сигнал нейрона карти ознак розраховується шляхом

підстановки вхідного сигналу в функцію активації:

y=f(x). (1.2.10)

У сучасних варіантах ЗНМ в якості функції активації схованих

нейронів використовується функція ReLU. В цьому випадку вираз (1.2.3)

замінюється виразом (1.2.5). В нейронах вихідного шару, як правило,

використовується функція активації типу Softmax, що задається виразом

(1.2.6).

Важливим недоліком класичних ЗНМ є складність аналізу динамічних

рядів даних, адже кількість вхідних параметрів ЗНМ так само, як і ГНМ є

фіксованою величиною. Для виправлення останнього недоліку

використовують рекурентну ЗНМ, структура якої показана на рис. 1.2.4.

Особливістю наведеної структури є наявність рекурентного модулю, що

дозволяє опрацьовувати серію подій в часі. В якості означеного рекурентного

модулю як правило використовують блок LSTM-пам'яті (long short-term

memory network), структура якого показана на рис. 1.2.5.

15

Рис. 1.2.4. Структурна схема рекурентної згорткової нейронної мережі

На відміну від класичних рекурентних НММ блок LSTM-пам'яті

містить в собі так звані вентилі. Вхідний вентиль спрацьовує, коли на вхід

блоку LSTM-пам'яті надходять новий образ. В цьому випадку блок повинен

визначити, чи несе даний образ нову корисну інформацію, яку варто додати в

довготривалу пам'ять. Таким чином, при надходженні нового вхідного образу

блок LSTM-пам'яті спочатку забуває всю довготривалу інформацію.

Рис. 1.2.5. Структурна схема блоку LSTM-пам'яті

Після цього визначається, які елементи вхідного образу можуть бути

16

корисні і додаються в довгострокову пам'ять. Вентиль забування

призначений для того, щоб в процесі навчання сформувати спеціальний

механізм забування: коли приходить нова вхідна інформація, блок LSTM-

пам'яті повинен знати, які знання слід продовжувати пам'ятати, а які слід

забути. Вихідний вентиль визначає, які елементи довгострокової пам'яті

можуть стати в нагоді в самий найближчий час. Наприклад, певна сигнатура

k-го комп'ютерного вірусу є корисною інформацією, яку має сенс зберігати в

довготривалій пам'яті, але якщо k-ий комп'ютерний вірус не підлягає

розпізнаванню, ця інформація, швидше за все, не знадобиться.

Таким чином, замість того, щоб завжди використовувати всю

довготривалу пам'ять, мережа навчається фокусувати увагу на певних її

елементах. За допомогою описаних вище механізмів навчання блок LSTM-

пам'яті визначає, які елементи нового навчального образу необхідно забути,

які додати, а на яких необхідно сфокусувати увагу. Такий підхід дозволяє

відстежувати інформацію протягом більш тривалих періодів часу. В багатьох

випадках важливою проблемою побудови НММ є недостатня кількість

маркованих навчальних прикладів. Для вирішення вказаної проблеми

використовується автоендкодер, структура якого показана на рис. 1.2.6.

Рис. 1.2.6. Архітектура автоендкодера

17

На рис 1.3.8 вихідний сигнал автокодувальника відповідає вектору (y1,

y1, … yn). Навчання автокодувальника реалізується за допомогою алгоритму

зворотнього розповсюдження помилки. При цьому цільова функція навчання

визначається за допомогою виразу:

f W ,b (x)≈ x . (1.2.11)

Використання даної цільової функції передбачає те, що вихідний

сигнал автокодувальника повинен дорівнювати вхідному сигналу. Таким

чином, навчання класичного автокодувальника зводиться до того, що б за

допомогою алгоритму зворотнього поширення помилки знайти такі значення

вагових коефіцієнтів при яких вихідний сигнал буде дорівнює вхідному [49].

При цьому навчальні приклади можуть бути немаркованими, тобто не

містити очікуваний вхідний сигнал. Пошук оптимального значення вагових

коефіцієнтів проводиться за допомогою градієнтного спуску шляхом

мінімізації функції втрат.

1.3. Аналіз нейромережевих моделей та методів розпізнавання

комп'ютерних вірусів

В процесі аналізу робіт, присвячених використанню НМ в САЗ для

розпізнавання комп'ютерних вірусів, виявлено, що в багатьох випадках

помітна невідповідність назви та опису наведеної розробки. Тому аналіз

вказаних робіт здійснено з точки зору визначення основних характеристик

нейромережевих методів та моделей. Крім того, додатково проаналізовані

нейромережеві засоби розпізнавання кібератак, функціональність яких схожа

з функціональністю засобів розпізнавання комп'ютерних вірусів.

В роботі [103] показано, що основною задачею застосування НМ в САЗ

являється розпізнавання ШПЗ на основі узагальнення контрольованих

параметрів, відображених в навчальних прикладах [100]. При цьому процес

нейромережевого розпізнавання ШПЗ, як правило полягає в нейромережевій

оцінці величин множини контрольованих параметрів. Якщо виставлена за

допомогою НМ оцінка знаходиться в певному діапазоні, то вважається, що

18

ШПЗ розпізнано, а у випадку виходу за межі цього діапазону вважається, що

в комп’ютерній системі ШПЗ відсутнє.

Відповідно описаній в [90] методології розробки НМЗ захисту

інформації основні напрямки підвищення ефективності таких засобів

пов’язані з адаптацією виду та параметрів НММ до очікуваних умов

застосування, які в першу чергу визначаються використаною множиною

вхідних параметрів.

В статті [30] розглянуто проблеми детектування складних поліморфних

і метаморфних комп'ютерних вірусів. Запропоновано і детально розглянуто

новий метод побудови функціональної сигнатури вірусу (МПФС) на основі

послідовності системних викликів. Показано, що наведена функціональна

сигнатура на основі послідовності системних викликів (трас виконання)

може бути використана для детектування складних поліморфних і

метаморфних вірусів, для яких побудова класичної сигнатури ускладненою

або і неможливою. Зазначено, що методи автоматичного виділення сигнатур

на стороні кінцевого користувача на основі даних евристичного або

поведінкового аналізу можуть стати основою антивірусного ПЗ нового

покоління.

В роботі [9] розглянуто підхід кодової нормалізації (ПКД) -

застосування методів деобфускаціі/оптимізації для виділення мінімальної

функціонально еквівалентної форми послідовності інструкцій. Основним

недоліком запропонованого методу є припущення про коректне

дизассемблювання нормалізованого коду, зроблене відповідно до того, що

вірус при побудові нової копії повинен сам дизасемблювати.

У роботах [1, 12] розглянуто підхід до розпізнавання метаморфних

вірусів (ПРМВ), яким не потрібно проводити самостійне дизасемблювання

при поширенні і генерації нових копій.

В роботі [82] розроблено класифікатор для статичного виявлення

комп'ютерних вірусів (КСВВ), що базується на машинному навчанні.

Показано недоліки відомих підходів до формування множини вхідних

параметрів. У підходу з виділенням рядків недолік полягає в тому, що різні

класи вірусів мають різні рядкові описи. Відповідно підхід ефективний

19

тільки при розпізнаванні конкретного тип у вірусів. У підходу на основі N-

грам байт погана інтерпретація результатів. У підходу на основі N-грам

опкодів недостатня точність виявлення. Підхід на основі структурних ознак

вразливий з точки зору підробки. Розроблений класифікатор використовує

змішаний підхід.

Стаття [17] присвячена розробці евристичного сканера САЗ (ЕССАЗ)

на базі НМ АРТ-1, архітектура якої наведена на рис. 1.3.1. В якості джерела

вхідних параметрів НММ використано параметри мережевої активності, а

саме: num_failed_logins – кількість невдалих спроб входу; num_root –

число спроб входу root-користувача, або адміністратора; src_bytes –

кількість даних (в байтах) від дже- рела до адресата; dst_bytes – кількість

даних (в байтах) від адре- сата до джерела; num_file_creations – число

операцій створення файлу; num_shells – число підказок оболонки;

num_access_files – число операцій з файлами доступу.

Рис. 1.3.1 Архітектура нейронної мережі типу АРТ-1

В статті [13] розглянуті особливості програмної реалізації алгоритмів

методики формування навчальної множини (АМФНМ) для бінарних

класифікаторів, що використовуються при евристичному статистичному

аналізі в антивірусах. Зазначається важливість етапу підготовки навчальної

вибірки. В якості джерела вхідних даних запропоновано використовувати N-

грами байт програмного коду.

Управляючий
блок G2

Шар розпізнавання

Шар порівняння

Блок визначення
схожості

векторів G3

G1

G2 G3

 R C

Управляючий
блок G1

 X

20

В роботах [32, 57] наведено опис методів визначення фрагментів

програмного коду (МВФПК), призначених для визначення переліку та

оцінки значень вхідних параметрів НММ, що використовуються в системах

детектування ШПЗ та в системах антивірусного захисту. Для підвищення

інформативності контрольованих параметрів в методі застосована процедура

їх попередньої обробки. Також описано підхід до застосування НММ на базі

топографічної карти Кохонена, структура якої показана на рис. 1.3.2.

Задекларовано, що вибір виду НММ відбувався за рахунок проведення

порівняльних числових експериментів. В якості критерію порівняння

використано термін навчання.

В роботі [28] запропоновано підхід до визначення переліку вхідних

параметрів НММ (ПВПВП), призначеної для розпізнавання ШПЗ на основі

аналізу програмного коду. Підхід передбачає використання для

деобфусикації теоретичних рішень, що використовуються для оптимізації

програмного коду. Також розроблена процедура деобфускації програмного

коду з використанням графа залежності значень і станів. Встановлено, що

використання розробленої процедури дозволяє представити функціональну

семантику тестованих програм у вигляді графа. В результаті стало можливим

нейромережеве виявлення ШПЗ на основі семантики його виконання.

Рис. 1.3.2 Архітектура нейронної мережі типу карти Кохонена

21

В [12] запропоновано систему розпізнавання комп’ютерних вірусів на

основі методу нейромережевого аналізу нормалізованих сигнатур (МНАНС).

Декларується точність розпізнавання в межах 80-91%. Вказується на

можливість розпізнавання поліморфних вірусів. В якості базової НММ

використано двохшаровий персептрон, структура якого показана на рис.

1.2.1.

Схожі результати отримані і в [22, 39, 41, 46] де також використано

систему нейромережевого розпізнавання комп’ютерних вірусів (СНРКВ) на

базі двохшарового персептрону з одним або двома вихідними нейронами.

При цьому вхідні нейрони співвідносяться із параметрами, що

характеризують структуру PE-файлів. Основною відмінністю між

результатами [22, 39, 41, 46] є використання різних підходів до попередньої

обробки вхідних параметрів НММ.

В роботі [98] описані експерименти, що свідчать про точність

розпізнавання комп’ютерних вірусів на рівні 91%. Використано сигнатури

комп’ютерних вірусів представлені в базі даних malwr. Для розпізнавання

використано підхід до відображення динаміки передачі ШПЗ (ПВДП).

Відзначимо, що в [22, 39, 41, 46] механізму оптимізації структури

двохшарового персептрону та механізму формування навчальної вибірки не

наведено. Також викликають певні сумніви у доцільності використання

НММ на базі достатньо застарілих НММ типу двохшарового персептрону та

топографічної карти Кохонена.

В [45] розроблена нейромережева система розпізнавання з

переднавчанням на основі автоендкодера (НСРА). Використано DNN, що

складається із 8 шарів, кожен із яких містить 30 нейронів. Для отримання

множини вхідних даних DNN використано спеціально розроблений метод

автоматичної генерації сигнатур комп’ютерних вірусів. Наведено результати

числових експериментів в яких точність розпізнавання досягає 98%. Разом з

тим в [45] вказано, що DNN навчається тільки за допомогою механізму

автоендкодера на не маркованих даних. Це дещо знижує достовірність

отриманих результатів, оскільки вважається, що для забезпечення високої

точності розпізнавання також необхідно передбачити навчання DNN за

22

допомогою алгоритму зворотного поширення помилок на маркерованих

навчальних даних.

В [55] наведено опис методу застосування згорткових нейронних мереж

(СNN) для розпізнавання ВПО (МЗЗНМ). Зазначимо, що СNN є одним із

різновидів DNN, який традиційно використовується для розпізнавання

зображень. Для цього в [55] розроблено спосіб перетворення сигнатури

програмного коду у сіре масштабоване зображення розміром 32x32 пікселів.

Наведено описи проведених експериментів, в яких досліджувався вплив

структурних параметрів СNN на точність розпізнавання. Розглянуто три

варіанти структурних рішень СNN типу LeNet-5. Для найкращого варіанту

точність розпізнавання становить 93.86%. Сформульовано пропозицію про

необхідність розробки теоретичних положень щодо адаптації структурних

параметрів СNN до умов задачі розпізнавання ВПО. В роботах [39, 40] в

якості бази алгоритму пошуку ШПЗ використаний бустінг на вирішальних

деревах (XGBoost). Робота [13] присвячена аналізу методів машинного

навчання для виявлення ШПЗ. Обгрунтовано висновок про доцільність

застосування нейромережевих аналізаторів вдосконалених за рахунок

впровадження сучасних нейромережевих рішень.

В дослідженні [46] розроблено спосіб нейромережевого аналізу

(СНМА) PE-файлу представленого у вигляді чорно-білого зображення.

Завдання стояло у визначенні типу (malware family) ШПЗ. Сукупність

електронних даних представляли у вигляді матриці (0: чорний, 1: білий).

Ширина зображення фіксувалася в залежності від розміру файлу (32, <10kB,

64, 128, ..., 1024, > 1000kB). На основі зображень були визначені загальні

патерни, текстури для 25 типів шкідливих ПО. Для аналізу текстури

застосовувався фільтр Габора. Ознаки, отримані із зображень

використовували в класифікаторі метод k-найближчих сусідів з метрика

Евкліда. Хоч дослідження і представляє інтерес, але через тривалість

нейромережевого аналізу має суттєві обмеження.

В статтях [90, 91] та дисертації [9] розроблені нейромережеві методи та

моделі протидії атакам на ресурси інформаційних систем (НММПА). Роботи

акцентовані на вирішення питань, що виникають при розпізнаванні

23

мережевих кібератак за допомогою сучасних типів НММ. Відзначається, що

основні перспективи розпізнавання пов'язані з застосуванням ГНМ з прямим

розповсюдженням сигналу. Розглянута задача розробки такої НММ при

недостатньому обсягу навчальних даних. Запропоновано методи навчання

НММ за допомогою експертних знань та автоендкодера, архітектура якого

показана на рис. 1.2.6. В роботах [85-89] представлена нейромережева

методологія оцінки параметрів безпеки Інтернет-орієнтованих

інформаційних систем (НМОПБ), що призначена для розпізнавання

кібератак. Зазначимо, що поняття кібератаки є достатьно широким і включає

в себе в тому числі і атаки реалізовані за рахунок ШПЗ.

Серед проаналізованих, дана розробка є найбільш фундаментальною. У

ній отримали подальший розвиток теоретичні положення побудови НМЗ

оцінки ПБ, які полягають в розроблених підходах до розпізнавання

поступових і несподіваних кібератак, визначенні оптимального виду НММ,

доцільності застосування НМЗ, класифікації статистично подібних кібератак,

застосуванні продукційних правил для представлення експертних знань,

параметрах оцінки ефективності НМЗ. Також розроблені моделі створення і

використання НМЗ оцінки ПБ, які за рахунок застосування розроблених

теоретичних положень дозволяють: визначити перелік оцінюваних ПБ, а

також зменшити ресурсомісткість створення НМЗ. На основі зазначених

моделей розроблений ряд методів, що дозволяють підвищити ефективність

використання НМЗ Так, метод уявлення експертних знань для НМЗ оцінки

ПБ, дозволяє забезпечити оперативність розпізнавання і розширити множину

типів кібератак, для яких відсутні статистичні дані. Метод визначення

тимчасових характеристик використання НМЗ оцінки ПБ завдяки

використанню розроблених аналітичних залежностей між очікуваними і

допустимими термінами розробки забезпечує можливість визначення

доцільності застосування зазначених засобів.

Метод визначення ефективності розробки НМЗ оцінки ПБ, що за

рахунок застосування запропонованих параметрів оцінки ефективності та

сформованого інтегрального показника ефективності дозволяє вибрати

найбільш ефективний засіб. Застосування методу дозволило визначити, що у

24

відомих НМЗ розпізнавання кібератак недостатньо повно розроблений

механізм формування навчальної вибірки при кодуванні очікуваного

вихідного сигналу, не враховується близькість еталонів класів, котрі мають

бути розпізнані. Крім цього, такі засоби недостатньо адаптовані до

застосування сучасних типів НСМ.

На основі взаємопов'язаного використання розроблених підходів,

моделей і методів розроблено методологію нейромережевої оцінки ПБ, що

дозволяє значно розширити функціональні можливості НСР і вибрати з них

найбільш ефективне.

Також наведено опис та результати експериментів в яких для

розпізнавання ШПЗ було використано НММ на базі двохшарового

персептрону. При цьому оптимізація параметрів та оптимізація процедури

навчання НММ не проводилась.

Разом з тим можна відзначити, що прогрес в області теорії НМ та

захисту інформації зумовлює можливість доповнення вказаних рішень за

рахунок застосування нових типів НММ та нових підходів до розпізнавання

ШПЗ. З позицій мети представленого дослідження викликає інтерес

визначений в роботах [85-91] перелік параметрів, що характеризують

ефективність НМЗ розпізнавання кібератак.

Однак при оцінці ефективності НМЗ розпізнавання комп'ютерних

вірусів даний перелік параметрів слід модифікувати через його надмірність

та необхідність врахування особливостей сучасного стану рішень в області

теорії НМ. Також в переліку доцільно відобразити особливості

представленого дослідження.

1.4. Шляхи вдосконалення нейромережевих засобів розпізнавання

комп’ютерних вірусів

В результаті проведеного аналізу встановлено, що підвищення

ефективності сучасних НМЗ розпізнавання комп'ютерних вірусів йде шляхом

забезпечення в них певних можливостей, які характеризуються за допомогою

параметрів, представлених в табл. 1.1. Також зроблено висновок про те, що

ефективність НМЗ розпізнавання комп'ютерних вірусів в значній мірі

25

залежить від пристосованості до застосування ГНМ та проведення

деобфускації програмного коду, що принципово забезпечує можливість

нейромережевого розпізнавання поліморфних вірусів.

Даний висновок сформульований на підставі результатів робіт [43], в

яких обґрунтовано підходи до визначення параметрів нейромережевих

моделей та деобфускації програмного коду комп'ютерних вірусів. За рахунок

цього, запропоновано використання параметрів R3, R4, R7 та R8, опис яких

також представлено в табл. 1.1. Надалі представлений в табл.1.1 перелік

параметрів може бути розширено.

Таблиця 1.1

Параметри оцінки ефективності нейромережевих засобів

Назва

параметру

Опис параметру

R1 Наявність процедури кодування вхідних параметрів

R2 Наявність процедури нормалізації вхідних параметрів

R3 Визначення найбільш ефективного типу глибокої

нейронної мережі

R4 Визначення параметрів глибокої нейронної мережі

R5 Оптимізація методу навчання

R6 Можливість навчання за допомогою експертних правил

R7 Визначення доцільності використання типу глибокої

нейронної мережі для вирішення поставленої задачі

R8 Наявність процедури деобфускації

R9 Наявність процедури формування навчальної вибірки з

різнорідних статистичних даних

Наявність вказаних процедур в проаналізованих нейромережевих

моделях та методах наведено в табл. 1.2.

Аналіз даних табл. 1.2 вказує на недостатню адаптацію відомих

нейромережевих НМЗ до застосування сучасних рішень в області НМ та до

розпізнавання обфускованих комп’ютерних вірусів. В підсумку проведений

26

аналіз дозволяє стверджувати, що для підвищення ефективності

розпізнавання комп’ютерних вірусів необхідно розробити відповідний

нейромережевий метод, в якому вказані недоліки будуть виправлені.

Розробка такого методу призводить до необхідності вдосконалення

методологічних засад застосування НММ.

В першому наближенні передбачено оцінювання величин

запропонованих параметрів по бінарній шкалі: 0 або 1. Деякий параметр

дорівнює 0, якщо відповідна йому процедура в НМЗ не забезпечується і

величина параметру дорівнює 1 в протилежному випадку.

При цьому для всіх проаналізованих методів R3=R7=0. Тобто в

більшості з відомих методів нейромережевого розпізнавання комп’ютерних

вірусів не реалізована процедура визначення доцільності використання типу

глибокої нейронної мережі для вирішення поставленої задачі та процедура

визначення найбільш ефективного типу глибокої нейронної мережі.

Таблиця 1.2

Наявність базових процедур, що визначають ефективність

нейромережевих засобів розпізнавання комп’ютерних вірусів

№
Назва

засобу

Параметр

R1 R2 R3 R4 R5 R6 R7 R8 R9

1 2 3 4 5 6 7 8 9 10 11

1 МПФС + + - - - + - - +

2 ПКД + - - - - - - + -

3 ПРМВ + + - - - - - - -

4 КСВВ + + - - - - - - +

5 ЕССАЗ + + - - - - - - -

6 АМФНМ + + - - - - - - +

7 МВФПК + + - - - - - - -

8 ПВПВП + + - - - - - + -

9 МНАНС + + - - - - - - -

10 ПВДП + + - - - - - - -

11 НСРА + + - + + - - - +

27

12 МЗЗНМ + + - + + - - - +

13 СНМА + + - + + - - - +

14 НММПА + + - - + + - - -

15 НМОПБ + + - + + + - - +

16 СНРКВ + + - - - - - - -

Крім того, використання запропонованих критеріїв дозволяє за

аналогією з [26] визначити інтегральний показник ефективності НМЗ (RΣ) за

допомогою наступного виразу:

RΣ=∑
i=1

9

(αi Ri) , (1.4.1)

де α i – ваговий коефіцієнт і-го критерію ефективності.

Визначити найбільш ефективний НМЗ можна, скориставшись виразом:

max
Ei

= { E1, E2 , . . E I }
, (1.4.2)

де I – кількість типів НМЗ, RΣ – інтегральний показник ефективності і-

го НМЗ.

У загальному випадку визначення вагових коефіцієнтів вимагає

окремого дослідження, а в базовому варіанті можна припустити, що α i=1 .

В результаті проведеного аналізу можливо зробити висновок про те, що

важливим та актуальним напрямком підвищення ефективності систем

розпізнавання комп’ютерних вірусів є застосування нейромережевих

моделей та методів. В той же час проведений аналіз вказує на необхідність їх

подальшого вдосконалення в напрямку адаптації до очікуваних умов

експлуатації. При цьому очікувані умови впровадження нейромережевих

засобів характеризуються варіативністю обмежень на термін розробки САЗ,

обмеженістю обчислювальних ресурсів, що можуть бути використані при

побудові НММ, типом антивірусної системи, відсутністю достатньо повних

баз даних прикладів комп’ютерних вірусів, необхідних для проведення

навчання НММ та забезпеченням можливості аналізу обфускованого

програмного коду. В підсумку, визначено, що для створення ефективних

28

нейромережевих засобів розпізнавання комп’ютерних вірусів, необхідно

вирішити ряд завдань:

- розробити принципи та модель визначення ефективних видів

глибоких нейронних мереж, призначених для розпізнавання комп’ютерних

вірусів;

- розробити принципи та модель формування параметрів навчальних

прикладів глибокої нейронної мережі, що забезпечать можливість

нейромережевого аналізу обфускованого програмного коду;

- розробити та дослідити метод проектування архітектури глибокої

нейронної мережі, призначеної для розпізнавання вірусів;

- розробити та дослідити метод нейромережевого розпізнавання

комп’ютерних вірусів.

29

РОЗДІЛ 2. ЕЛЕМЕНТИ МЕТОДОЛОГІЧНОЇ БАЗИ

НЕЙРОМЕРЕЖЕВОГО РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ

ВІРУСІВ

2.1. Концептуальна модель забезпечення ефективності

нейромережевого розпізнавання комп’ютерних вірусів

В результаті досліджень, проведених в першому розділі визначено, що

одним із найбільш важливих напрямків розвитку антивірусних засобів

співвідноситься з задачею розробки НМЗ розпізнавання комп’ютерних

вірусів. Важливою складовою вказаної задачі є необхідність визначення

параметрів НММ, адаптованих до умов розпізнавання комп'ютерних вірусів,

як у випадку деобфускованого, так і у випадку обфускованого програмного

коду. Базуючись на результатах [28] можна стверджувати, що таких умов

відносяться:

- Допустимий термін розробки;

- Обсяг матеріальних ресурсів, які можливо використати при створенні

засобів розпізнавання.

- Доступність баз даних параметрів комп'ютерних вірусів, необхідних

для навчання НММ.

- Доступний обсяг обчислювальних ресурсів антивірусних засобів.

При цьому питання реєстрації та збереження параметрів комп'ютерних

вірусів вважаються вирішеними [15, 24, 50, 62]. Також в даній дисертаційній

роботі не розглядаються питання пов'язані з сигналізацією про розпізнані

віруси.

Відповідно до рекомендацій [8, 9, 68], перший етап вирішення

сформульованого завдання асоційовано з розробкою концептуальної моделі

забезпечення ефективного застосування НММ для розпізнавання

комп'ютерних вірусів. В даному випадку під поняттям концептуальної моделі

будемо розуміти змістовну модель, при формулюванні якої

використовуються поняття і уявлення в області захисту інформації. Слід

відзначити, що саме створення концептуальної (базової) моделі є першим

30

етапом розвитку методологічної бази, що репрезентує собою систему

принципів і способів організації та побудови теоретичної і практичної

діяльності, а також вчення про цю систему [58, 94].

В зв'язку з тим, що очікуваним практичним результатом дисертаційної

роботи являється програмно-апаратний комплекс розпізнавання

комп'ютерних вірусів, то при побудові концептуальної моделі використано

термінологію не тільки із області захисту інформації, але й із області теорії

нейронних мереж, програмної та комп'ютерної інженерії.

Також проведено гармонізацію термінології, що використовується в

області нейромережевого розпізнавання комп'ютерних вірусів.

Запропоновано визначення наступних термінів:

- Діагностичний параметр - параметр, що використовується для

розпізнавання комп'ютерного вірусу.

- Портрет комп’ютерного вірусу (ПКС) – множина діагностичних

параметрів, що описують комп'ютерний вірус.

- Портрет сигнатури (ПС) – множина параметрів, що характеризують

сигнатуру комп’ютерного вірусу.

- Портрет поведінки операційної системи (ППС) – множина параметрів,

що характеризують події в операційній системі під час функціонування

комп’ютерного вірусу.

- Портрет діагностичних параметрів - множина діагностичних

параметрів, що використовується для розпізнавання виду ПЗ.

- Нейромережева модель (НММ) – опис нейронної мережі, що включає

в себе метод навчання, структуру зв'язків, параметри штучного нейрону,

спосіб розповсюдження сигналу.

- Глибока нейронна мережа (ГНМ) – нейромережева модель в якій

кількість схованих шарів синаптичних зв'язків більша ніж два.

- Навчання НММ - процес настройки параметрів такої моделі, що

реалізується на експериментальних даних (навчальних прикладах).

- Навчальний приклад (НП) - запис навчального набору даних, значення

якого використовуються для обчислення корекції параметрів моделі.

У випадку маркованих даних НП представляє собою:

31

НП=[X,Y], (2.1)

де X=(x1,x2,…,xn) – заданий вектор вхідних значень НММ; Y=(y1,y2,

…,yn) – вихідний вектор, який повинна сформувати навчена НММ в якості

відгука при подачі на її вхід вектора X.

При немаркованих даних до складу НП входить тільки вектор X.

- Навчальна вибірка (НВ) - множина навальних прикладів НММ.

В контексті завдання даного дисертаційного дослідження

концептуальна модель, призначена, перш за все, для формалізації причинно-

наслідкових зв'язків, які властиві процесу розпізнавання комп'ютерних

вірусів. Ще одним призначенням концептуальної моделі є визначення

аспектів розпізнавання, що впливають на рівень захищеності сучасних ІС.

Крім цього, в концептуальної моделі враховано:

- Умови функціонування НМЗ розпізнавання комп'ютерних вірусів, що

визначаються характером взаємодії окремих частин засобів розпізнавання і

компонентами ІС.

- Необхідність реалізації ефективного використання НММ для

розпізнавання комп'ютерних вірусів і основні напрямки підвищення

ефективності їх функціонування.

- Можливість управління НМЗ і визначення їх налаштувань.

Також в результаті досліджень [41] визначено множину термінів, що

використовуються для опису параметрів, котрі можуть використовуватись в

НМЗ розпізнавання комп'ютерних вірусів:

− API (application programming interface/інтерфейс прикладного

програмування) ОС – множина класів, функцій, процедур, структур та

констант ОС, що є доступними для використання ШПЗ.

− Виклик API-функції - сигнатура виклику ШПЗ API-функції.

− Сигнатура функції - це частина загального оголошення функції, яка

дозволяє засобам трансляції виконувати ідентифікацію цієї самої функції

серед інших. До сигнатури виклику API-функції ШПЗ в першу чергу

відносяться ім'я функції, що використовується ШПЗ та послідовність типів її

аргументів.

32

− Сигнатура вірусу/ШПЗ - характерні формалізовані ознаки коду

комп'ютерного вірусу/ШПЗ, що можуть бути використані для його

розпізнавання. В якості сигнатур скриптового ШПЗ можуть бути використані

множини операторів програмного коду. В якості сигнатур файлів, що

виконуються використовуються послідовності байт (хеш-сканів цих

послідовностей), що властиві певному типу ШПЗ. Також в якості сигнатур

можуть бути використані виклики потенційно небезпечних API-функції,

знайдені в коді ПЗ.

− Байт-послідовність N-грамів – неперервна послідовність кількістю в

N байт. Розрізняють байт-послідовності N-грамів, характерних для ШПЗ та

для безпечного ПЗ. Байт-послідовності N-грамів в основному

використовуються для розпізнавання ШПЗ на основі статистичного аналізу

коду піддослідного ПЗ.

− Опкод (operation code) – інструкція машинного коду, що ідентифікує

операцію, яка має бути виконана.

− Бінарне двовимірне представлення програмного коду -

представлення програмного коду у вигляді двовимірно чорно-білого

зображення;

− Параметри PE-заголовку файлу – службова інформація, що

міститься в PE-заголовку та описує різні властивості файлу і його структуру.

Структура заголовків складається із наступних частин: заголовок DOS,

заглушка DOS, заголовок PE, заголовки секцій.

На наступному етапі побудови концептуальної моделі з урахуванням

загальноприйнятої технології використання НММ визначено, що в

узагальненому вигляді процес забезпечення нейромережевого розпізнавання

комп'ютерних вірусів повинен передбачати:

- Визначення параметрів навчальних прикладів.

- Формування навчальної вибірки.

- Визначення виду і параметрів НММ.

- Використання НММ для розпізнавання.

Діаграма декомпозиції застосування НММ для розпізнавання

комп'ютерних вірусів показана на рис. 2.1.

33

Коротка характеристика складових даної діаграми:

- Формування параметрів навчальних прикладів - визначення для

кожного виду комп'ютерних вірусів множини вхідних і вихідних параметрів і

способу їх кодування.

Рис. 2.1. Діаграма декомпозиції нейромережевого розпізнавання комп'ютерних вірусів

Коротка характеристика складових даної діаграми:

- Формування параметрів навчальних прикладів - визначення для

кожного виду комп'ютерних вірусів множини вхідних і вихідних параметрів і

способу їх кодування.

- Формування навчальної вибірки - визначення множини навчальних

прикладів, що достатньо якісно описують портрети комп'ютерних вірусів.

Кількість, якість і номенклатура прикладів повинні бути достатніми для

навчання НММ.

- Визначення виду і параметрів НММ - визначення виду і параметрів

НММ, при яких модель найбільш повно відповідає умовам поставленої

задачі розпізнавання комп'ютерних вірусів.

34

- Використання НММ - розпізнавання комп'ютерних вірусів.

Наступним етапом створення концептуальної моделі стала розробка

показаної на рис. 2.2 схеми компонентів НМС розпізнавання комп'ютерних

вірусів.

Рис. 2.2. Схема взаємодії компонентів нейромережевої системи розпізнавання

комп'ютерних вірусів

У схемі враховані особливості реалізації НМС, призначені для

розпізнавання обфускованих комп'ютерних вірусів, і результати розділу 1,

які стосуються недоліків відомих НМС аналогічного призначення.

Таким чином, в процесі розробки враховано:

- Недосконалість методів формування параметрів навчальних прикладів

для НММ, призначених для розпізнавання кібератак на мережеві РІС.

- Тривалий період формування навчальної вибірки для НММ в разі

обмеженого доступу до баз даних портретів комп'ютерних вірусів.

- Складність доступу до існуючих баз даних портретів комп'ютерних

вірусів.

- Необхідність деобфускації програмного коду.

Тому в схемі передбачена можливість формування параметрів

навчальних прикладів і навчальної вибірки за допомогою експертних даних.

35

Аналіз даних, показаних на рис. 2.1 і рис. 2.2, дозволяє стверджувати, що на

ефективність нейромережевого розпізнавання комп'ютерних вірусів

впливають ряд факторів, показаних на рис. 2.3.

Рис. 2.3. Фактори, що впливають на ефективність розпізнавання

Крім цього, можна стверджувати, що ефективність нейромережевого

розпізнавання доцільно оцінювати як з точки зору ефективності процесу

використання НМЗ, так і з точки зору ефективності процесу навчання НММ.

При цьому показники ефективності повинні відображати тривалість,

ресурсомісткість і точність названих процесів. Таким чином, обґрунтовані

показання на рис. 2.4 показники оцінки ефективності нейромережевого

розпізнавання комп'ютерних вірусів.

У формалізованій постановці інтегральну ефективність процесу

нейромережевого розпізнавання комп'ютерних вірусів можливо описати за

допомогою наступних параметрів:

- EНСР – ефективність розробки та використання НМЗ;

36

- EОВ – ефективність розробки навчальної вибірки;

- e1 – визначення ефективних видів НММ;

- e2 – визначення параметрів НММ;

- e3 – ресурсоємність використання НМЗ;

- e4 – визначення параметрів навчальних прикладів;

- e5 – деобфускація програмного коду.

Ри

с. 2.4. Показники оцінки ефективності нейромережевого розпізнавання

В результаті визначено, що в аналітичному вигляді концептуальну

модель забезпечення ефективності процесу нейромережевого розпізнавання

комп'ютерних вірусів можна відобразити за допомогою виразів:

EΣ=f (EНСР ,EОВ) , (2.2)

37

EНСР= f (e1 ,e2 , e3) , (2.3)

EОВ= f (e4 , e5) , (2.4)

де EΣ – інтегральна ефективність процесу.

Аналіз розробленої концептуальної моделі дозволяє стверджувати, що

для ефективного нейромережевого розпізнавання комп'ютерних вірусів

необхідно доповнити методологічну базу рядом принципів і моделей

процесів використання НМЗ. Оскільки в результаті аналізу сучасних НММ

визначено перспективність використання ГНМ, то в методологічній базі слід

акцентувати увагу саме на цей вид моделей.

Зазначимо, що особливості ГНМ в значній мірі залежать від структури

та математичного забезпечення НММ, що в свою чергу визначається видом

цієї моделі. Надалі необхідно застосувати отримані елементи методологічної

бази для розробки нейромережевих моделей і методів розпізнавання

комп'ютерних вірусів.

2.2. Принципи використання глибоких нейронних мереж

В основу розробки принципів використання ГНМ для розпізнавання

комп'ютерних вірусів покладені результати роботи [88], присвяченої

використанню НММ для розпізнавання мережевих кібератак та роботи [76] в

якій НММ застосовані для аналізу голосового сигналу. Базуючись на

вказаних дослідженнях передбачено доповнення методологічної бази

принципами, що відображають:

- Допустимість використання виду ГНМ для розпізнавання

комп’ютерних вірусів.

- Визначення множини ефективних видів ГНМ для розпізнавання

комп’ютерних вірусів.

- Оцінювання ефективності виду ГНМ.

- Представлення процесу функціонування програмного забезпечення у

вигляді графа залежностей значень та станів.

38

- Оцінювання безпечності програмного забезпечення за допомогою

графів залежностей значень та станів.

Принцип допустимості використання виду ГНМ для розпізнавання

комп’ютерних вірусів, полягає в тому, що серед множини доступних деякий

вид ГНМ входить до множини допустимих видів, якщо його основні

характеристики задовольняють вимогам щодо допустимого терміну і

допустимої ресурсоємності побудови НМЗ.

У формалізованому вигляді вказаний принцип передбачає

використання наступних компонент:

- DNN – множина доступних видів ГНМ.

- DNN i - і-ий доступний вид ГНМ.

- DNNavl - множина допустимих видів ГНМ.

- τavl - допустимий термін розробки НМЗ.

- Qavl - допустима ресурсоємність побудови НМЗ.

- Q(DNNi) – ресурсоємність побудови НМЗ на основі і-го доступного

виду ГНМ.

- τ(DNNi) – термін розробки НМЗ на основі і-го доступного виду ГНМ.

В результаті проведеної формалізації запропонований принцип

допустимості використання виду ГНМ можливо записати у вигляді

наступного виразу:

if (Q (DNNi)≤Qavl)∧(τ (DNNi)≤τavl)→DNN i∈DNNavl , (2.5)

Принцип визначення множини ефективних видів ГНМ для

розпізнавання комп’ютерних вірусів полягає у тому, що і-ий доступний вид

ГНМ входить до множини ефективних видів, якщо для нього значення

функції ефективності не менше допустимого значення.

Формалізація принципу визначення множини ефективних видів ГНМ

передбачає використання наступних компонент:

-
V (DNN i) - значення функції ефективності для і-го доступного виду

ГНМ.

- Vd – мінімально допустиме значення функції ефективності.

39

- DNN eff - множина ефективних видів ГНМ.

Таким чином, запропонований принцип визначення множини

ефективних видів ГНМ можливо записати у вигляді наступного виразу:

if V (DNNi)≤V d→DNNi∈DNN eff , (2.6)

При цьому в першому наближенні для розрахунку функції

ефективності можливо використовувати вираз виду:

V (DNN i)= ∑
k=1

K
α
k

Η
k (DNN i)

, (2.7)

де
Η k (DNNi) – значення k-го критерію для ГНМ з i-ою архітектурою,

α k= [0 . . ,1] – ваговий коефіцієнт k-го критерію ефективності, К – кількість

критеріїв.

Зазначимо, що вираз (2.7) використовується в базовому випадку, в

подальшому процедура розрахунку функції ефективності може бути

вдосконалена з урахуванням результатів [9].

Принцип оцінювання ефективності виду ГНМ, призначеної для

розпізнавання комп’ютерних вірусів, полягає в тому, що серед множини

допустимих і-ий вид ГНМ (DNNi) є найбільш ефективним, якщо для нього

функція ефективності (Vi) має максимальне значення. Як і попередні,

принцип оцінювання ефективності виду ГНМ можливо записати у вигляді

наступного виразу:

max
V i

= { V 1 , V 2 , . . V I }
. (2.8)

Принцип представлення процесу функціонування програмного

забезпечення у вигляді графа залежностей значень та станів полягає в тому,

що поведінка програмного забезпечення представляється за допомогою

спеціалізованого графа залежностей значень та станів.

У формалізованому вигляді вказаний принцип передбачає

використання наступних компонент:

- F – множина, що описує дії програмного забезпечення.

- T – множина переходів.

- S – множина станів графу, що описує поведінку програмного

40

забезпечення.

В результаті формалізації означений принцип представлення процесу

функціонування програмного забезпечення у вигляді графа залежностей

значень та станів набуває такого вигляду:

F=<T ,S>¿ ¿ . (2.9)

Принцип оцінювання безпечності програмного забезпечення за

допомогою графів залежностей значень та станів полягає в тому, що

безпечність програмного забезпечення можливо оцінити за рахунок

порівняння графа залежностей значень та станів піддослідної програми з

відповідними графами безпечних програм та графами комп’ютерних вірусів.

У формалізованому вигляді принцип оцінювання безпечності

програмного забезпечення за допомогою графів залежностей значень та

станів можливо записати у вигляді наступних виразів:

if Fx=F s→ x∈ S , (2.10)

if Fx=Fv→ x∈V , (2.11)

де Fx – граф піддослідного програмного забезпечення, Fs – множина

графів безпечних програм, Fv – множина графів комп’ютерних вірусів, x –

піддослідне програмне забезпечення, S – множина безпечних програм,

V – множина комп’ютерних вірусів.

2.3. Модель правил визначення ефективних видів глибоких

нейронних мереж

Запропонована модель правил визначення ефективних видів ГНМ

базується розробленому принципі допустимості застосування виду та на

принципі визначення множини ефективних видів ГНМ.

Основними складовими вказаної моделі є

- DNN ent – множина доступних видів ГНМ.

- DNNavl – множина допустимих видів ГНМ.

- DNN eff – множина ефективних видів ГНМ.

41

Процес визначення множини ефективних видів ГНМ можливо

представити у вигляді:

 DNN ent→DNNavl→DNN eff . (2.12)

Як показують результати [59] до складу множини доступних видів

ГНМ входять:

 dnn1 - повнозв’язні ГНМ, при навчанні яких процедура

переднавчання не передбачена;

 dnn2 - повнозв’язні ГНМ, при навчанні яких використовується

процедура переднавчання;

 dnn3 - ГНМ типу ЗНМ з прямим поширенням сигналу;

 dnn4 - ГНМ типу рекурентних ЗНМ.

При цьому множина доступних видів ГНМ записується так:

DNNent={dnn1 , dnn2 , dnn3 , dnn4 } . (2.13)

Особливості структурних рішень доступних видів ГНМ показані на рис.

1.3.4-1.3.8. Так на рис. 1.3.4 показана узагальнена структурна схема

повнозв’язної ГНМ, при навчанні яких процедура переднавчання не

передбачена. По суті вказані ГНМ являються різновидом класичного

багатошарового персептрону у якого кількість схованих шарів нейронів

більша за одиницю. Вхідні нейрони такої нейронної мережі асоціюються з

параметрами, що використовуються для розпізнавання комп'ютерних вірусів.

Це можуть бути назви потенційно небезпечних API-функцій або характерні

фрагменти програмного коду. На рис. 1.3.4 кількість таких параметрів

дорівнює Nx. Вихідні нейрони мережі асоціюються з безпечним програмним

забезпеченням та з назвами вірусів, що мають бути розпізнаними. Так,

показана на рис. 1.3.4 ГНМ, призначена для розпізнавання (Ny-1) вірусів.

В задачах розпізнавання ШПЗ перевагами повнозв'язних ГНМ в яких

процедура переднавчання не передбачена є відносна простота, апробованість

та надійність. До недоліків відносять:

- Неможливість аналізу динамічних рядів даних.

- Неможливість врахувати топологію даних, що призводить до

42

зменшення обчислювальної потужності мережі.

- Необхідність використання великого обсягу маркованих навчальних

прикладів, що призводить до значного ускладнення навчальної вибірки.

Одним із шляхів усунення останнього недоліку є використання

повнозв’язних ГНМ, при навчанні яких використовується процедура

переднавчання. Структура та математичне забезпечення таких НММ не

відрізняється від dnn1. Відмінності полягають лише у процедурі навчання,

що розділяється на два етапи. На першому етапі, що носить назву

переднавчання ГНМ навчається на не маркованих прикладах.

Для цього, як правило використовується так званий автоендкодер,

структура якого показана на рис. 1.3.8.

При розпізнаванні ШПЗ вхідними даними автоендкодера є немарковані

навчальні приклади, параметри яких були визначені при формуванні

концептуальної моделі. Таким чином, навчальні приклади автоендкодера,

що призначений для використання в антивірусних засобах, визначається

виразом виду:

х=(x1, x2,… xn), (2.17)

де n – кількість вхідних нейронів, x1, x2,… xn – діагностичні параметри.

В цьому випадку вихідний сигнал автокодувальника в якому кількість

схованих шарів нейронів дорівнює q розраховується так:

f W ,b (x)=a(q) , (2.18)

де W – масив вагових коефіцієнтів, b – масив зсувів, a(q) – масив

вихідних значень нейронів в останньому q-му шарі.

На рис 1.3.8 вихідний сигнал автокодувальника відповідає вектору (y1,

y1, … yn), тобто вектору назв ШПЗ, що має бути розпізнане. Таким чином,

використання автоендкодера дозволяє проводити навчання ГНМ на

немаркованих прикладах, що відповідають портретам діагностичних

параметрів. На другому етапі навчання ГНМ типу dnn2 навчається на

маркованих даних. За рахунок двоетапного навчання необхідна для якісного

навчання кількість маркованих прикладів значно зменшується. Так

відповідно результатів [49] у випадку розпізнавання комп'ютерних вірусів

необхідна кількість маркованих навчальних прикладів для ГНМ типу dnn1

43

становить:

P≈10× N . (2.20)

де P – кількість маркованих навчальних прикладів; N – кількість

вхідних сигналів НММ.

Разом з тим для ГНМ типу dnn2 необхідну кількість навчальних

прикладів можливо оцінити так:

P1 ≈10×N , (2.21)
P2 ≈0,1×P1 , (2.22)

де P1 – кількість не маркованих навчальних прикладів; P2 – кількість

маркованих навчальних прикладів.

Таким чином, аналіз виразів (2.20-2.22) дозволяє стверджувати про те,

що використання автоендкодера дозволяє до 10 разів зменшити кількість

маркованих навчальних прикладів, що необхідні для навчання. Разом з тим, в

джерелах [74-75] вказується, що використання автоендкодера може значно

ускладнити процес навчання ГНМ. Використання ЗНМ, спричинене

можливістю врахування НММ топології вхідних параметрів, що дозволяє в

значній мірі зменшити кількість синаптичних зв'язків моделі, а відповідно і

зменшити її ресурсоємність. Базовою конструкцією ЗНМ є НММ типу LeNet-

5, структурна схема якої показана на рис. 1.3.5. Особливістю застосування

ЗНМ в антивірусних засобах є те, що діагностичні параметри, котрі

використовуються в якості вхідних параметрів моделі, повинні бути

представлені у вигляді квадратного чорно-білого, сірого або кольорового

зображення. Як правило, вхідні параметри ЗНМ відповідають окремим

пікселям. Тому кількість вхідних параметрів дорівнює розміру зображення.

Стосовно розпізнавання комп'ютерних вірусів у випадку використання ЗНМ

у антивірусному моніторі окремий піксель може відповідати одній із API-

функцій операційної системи. При цьому вісь абцис буде відповідати

переліку API-функцій, що підлягають аналізу. Вісь ординат може бути

співвіднесена з часовим інтервалом розпізнавання.

В загальному випадку кількість вихідних нейронів дорівнює кількості

типів ПЗ, що мають бути розпізнані.

Дещо спростивши задачу розпізнавання комп'ютерних вірусів можливо

44

стверджувати, що кількість вихідних нейронів на одиницю більша від

кількості типів комп'ютерних вірусів, що підлягають розпізнаванню.

Зазначимо, що адаптація ЗНМ до умов задачі розпізнавання

комп'ютерних вірусів може бути реалізована за рахунок основних

конструктивних НММ даного типу. На підставі теоретичних робіт,

присвячених ЗНМ [77, 78] можна стверджувати, що такими

конструктивними параметрами є:

- Розмір вхідного поля, що відповідає вхідному полю діагностичних

параметрів.

- Кількість вхідних нейронів, що відповідають кількості діагностичних

параметрів.

- Кількість вихідних нейронів, що дорівнює кількості типів ПЗ

(легітимного та шкідливого), яке має бути розпізнане.

- Кількість нейронів в повнозв'язному шарі.

- Кількість шарів згортки.

- Кількість карт ознак в кожному шарі згортки.

- Кількість шарів підвибірки.

- Масштабний коефіцієнт для кожного шару підвибірки.

- Розмір ядра згортки для кожного шару згортки.

- Зміщення рецептивного поля при виконанні кожної процедури

згортки.

- Розмір карти ознак для кожного шару згортки.

- Структура зв'язків між сусідніми шарами згортки/підвибірки.

З урахуванням необхідності мінімізації помилки розпізнавання

комп'ютерних вірусів модель оптимізації структурних параметрів ЗНМ

можна записати за допомогою виразу:

(2.25)

де Δ - помилка розпізнавання, - вектор, що складається з

матриць які визначають зв'язки між сусідніми прихованими шарами

нейронів, R - ресурсоємність мережі, Rmax - максимально допустима

45

ресурсоємність мережі, Lin - кількість вхідних нейронів, Lls - кількість

нейронів в повнозв'язному шарі, Lout - кількість вихідних нейронів, Kh,k –

кількість карт ознак в кожному із шарів згортки, bk – розмір кожного із ядер

згортки, Kls – кількість шарів згортки.

До труднощів застосування ЗНМ в поставленій дисертаційній задачі

слід віднести складність визначення наявності топології у вхідних даних. Ще

одним недоліком ЗНМ є складність аналізу динамічних рядів даних, адже

кількість вхідних параметрів ЗНМ так само, як і ГНМ, є фіксованою

величиною. При цьому зміну значень діагностичних параметрів в часі

логічно представити у вигляді динамічного ряду даних. Для виправлення

останнього недоліку доцільно використати рекурентну ЗНМ, структурні

рішення якої показані на рис. 1.3.6, 1.3.7.

Проведені дослідження особливостей доступних видів ГНМ

дозволяють стверджувати, що в першому наближенні допустимість їх

використання можливо оцінити з позицій допустимого терміну розробки

відповідної НММ. При цьому термін розробки НММ можливо визначити за

допомогою виразу:

tdnn=tds+tm , (2.26)

де tdnn - термін розробки ГНМ; tds- термін формування навчальної

вибірки; tm - термін розробки параметрів ГНМ.

Значення tdnn, tds та tm вимірюються в секундах. Також секундах

вимірюються і складові цих термінів, що будуть показані в подальших

розрахунках.

Базуючись на результатах [16] визначено, що розробка параметрів

ГНМ в основному зводиться до навчання НММ. Тому в базовому варіанті

термін розробки параметрів ГНМ співвідноситься із терміном навчання

мережі.

Разом з тим при оціночних розрахунках вважається, що формування

навчальної вибірки зводиться до розробки навчальних прикладів кількість

яких є мінімально достатньою для навчання ГНМ. Вважається, що ця

кількість залежить від кількості вхідних і вихідних параметрів НММ і

визначається виразом:

46

L=20Nx Ny, (2.27)

де L – кількість навчальних прикладів, Nx – кількість вхідних нейронів

ГНМ, Ny – кількість вихідних нейронів ГНМ.

Враховуючи, що термін формування одного навчального прикладу є

відносно сталою величиною, термін формування навчальної вибірки можна

розрахувати так:

tds = L, (2.28)

де  - термін формування одного навчального прикладу.

Враховуючи (2.27) отримаємо:

tds = 20 Nx Ny. (2.29)

Як свідчать результати теоретичних робіт [36] в загальному випадку

для оцінки тривалості навчання НММ доцільно використовувати вираз виду:

ts=NWI (2.30)

де ts - тривалість навчання;  - тривалість однієї навчальної ітерації; N –

кількість нейронів; W - кількість синаптичних зв'язків; I - кількість

навчальних ітерацій.

Зазначимо, що при використанні загальнопоширених методів навчання,

що базуються на алгоритмі оберненого розповсюдження помилки достатню

кількість навчальних ітерацій можливо оцінити так:

t s , dnn1=k i ,dnne
−ε L2, (2.31)

де  - допустима похибка навчання; k i , dnn – коефіцієнт пропорційності.

Як показують дані [32] для повнозв'язних ГНМ кількість синаптичних

зв'язків можливо оцінити так:

W dnn 1,2≈kdnn1,2 (N x+N y)
2, (2.32)

де k dnn1,2 - коефіцієнт пропорційності, W dnn 1,2 - кількість синаптичних

зв'язків для ГНМ типу dnn1 та dnn2.

За рахунок застосування (2.31, 2.30) для повнозв'язних ГНМ в яких

процедура переднавчання не передбачена вираз (2.30) видозмінюється так:

t s , dnn1=k dnn1 λ e−ε L2
(N x+N y)

2, (2.33)

де t s , dnn1- тривалість навчання для ГНМ типу dnn1; k dnn1- коефіцієнт

пропорційності для ГНМ типу dnn1.

Для ГНМ типу dnn2 змінюється лише коефіцієнт пропорційності. Тобто:

47

t s , dnn2=k dnn2 λe−ε L2
(N x+N y)

2, (2.34)

де t s , dnn2- тривалість навчання для ГНМ типу dnn1; k dnn2- коефіцієнт

пропорційності для ГНМ типу dnn2.

Зазначимо, що відповідно даних [38] тривалість навчання ГНМ на

одному маркованому навчальному прикладі можливо вважати рівною

тривалості навчання на одному немаркованому навчальному прикладі.

При визначенні орієнтовного терміну навчання ЗНМ можливо

відштовхуватись від того, що по суті ЗНМ є модифікацією ГНМ адаптованою

до розпізнавання образів в яких важливо враховувати топологію даних. Ця

відмінність відображається наприклад на основі порівняння рис. 2.6 та рис.

2.7 на яких відображені структурні схеми dnn1 та dnn3.

Разом з тим порівняльний аналіз математичного забезпечення цих типів

НММ [102] дозволяє стверджувати, що урахування відмінностей в топології

основна особливість процесу навчання dnn3 полягає у необхідності проходу

ядра згортки по вхідному полю ЗНМ, по всім картам згортки та по всім

картам ознак. В першому наближенні тривалість таких проходів можна

розрахувати так:

tCNN ,dnn 2=kCNN ,dnn 2 N x
2, (2.35)

де kCNN ,dnn 2 – коефіцієнт пропорційності.

Зазначимо, що врахування топології даних дозволяє значно зменшити

кількість вагових коефіцієнтів мережі. За рахунок цього можливо вважати,

що кількість вагових коефіцієнтів для ЗНМ прямо пропорційна сумі кількості

вхідних та вихідних нейронів. Тобто для ЗНМ з прямим розповсюдженням

сигналу кількість синаптичних зв'язків можливо оцінити так:

W dnn 3≈ k i ,dnn 3 (N x+N y), (2.36)

де k i , dnn3 - коефіцієнт пропорційності, W dnn 32 - кількість синаптичних

зв'язків для ГНМ типу dnn3.

Інтегрувавши вирази (2.30-2.32, 2.35, 2.36) отримаємо:

t s , dnn3=k i ,dnn 3 λe− ε L2
(N x+N y) kCNN ,dnn 2 N x

2, (2.37)

де t s , dnn3- тривалість навчання для ГНМ типу dnn3;  - допустима похибка

навчання.

Після відповідних спрощень отримаємо:

48

t s , dnn3=kdnn3 λ e−ε L2
(N x+N y) N x

2, (2.38)

де k dnn3- коефіцієнт пропорційності для ГНМ типу dnn3.

При оцінці терміну навчання рекурентних ЗНМ використано два

постулати:

- Як свідчать дані [1-10] та порівняння структурних схем, показаних

на рис. 2.7-2.9, рекурентну ЗНМ можливо як розгорнуту в часі ЗНМ.

- Глибину розгортання можливо оцінити за допомогою емпіричного

коефіцієнту.

Використання вказаних постулатів дозволило для визначення терміну

навчання рекурентних ЗНМ використати вираз (2.38), видозмінивши його

так:

t s , dnn4=kdnn 3 kCNN ,dnn 4 λe−ε L2
(N x+N y) N x

2, (2.39)

де t s , dnn4- тривалість навчання для ГНМ типу dnn4; kCNN ,dnn 4 – коефіцієнт

глибини рекурсії.

 Після деяких спрощень отримаємо:

t s , dnn4=kdnn 4 λ e−ε L2
(N x+N y) N x

2, (2.40)

де k dnn4- коефіцієнт пропорційності для ГНМ типу dnn4.

Таким чином, вирази (2.33, 2.34, 2.38, 2.40) дозволяють оцінити

орієнтовний термін навчання для доступних видів ГНМ, що дозволило

перейти до визначення загального терміну їх побудови.

Для визначення загального терміну побудови повнозв’язних ГНМ, при

навчанні яких процедура переднавчання не передбачена в вираз (2.26)

підставлені вирази (2.29) та (2.33). Отримано:

t dnn1=20 N x N y+kdnn1 λ e−ε L2
(N x+N y)

2, (2.41)

де t dnn1 – термін побудови ГНМ типу dnn1.

Після тривіальних спрощень отримано:

t dnn1=kdnn1 λe−ε L2 (N x
2
+N y

2)+2N x N y (10❑m+kdnn 1 λe−ε L2), (2.42)

де ❑m – термін створення одного маркованого прикладу.

Для визначення загального терміну побудови повнозв’язних ГНМ, при

навчанні яких використовується процедура переднавчання врахована

необхідність створення як маркованих, так і немаркованих прикладів.

При цьому:

49

ϑ nm≈0,01ϑm, (2.43)

Lnm ≈10 Lm, (2.44)

Ldnn 2=Lnm+Lm, (2.45)

Тобто термін створення одного немаркованого прикладу в 100 разів

коротший ніж термін створення одного маркованого прикладу. Кількість

немаркованих прикладів як правило мінімум в 10 разів перевищує кількість

маркованих прикладів. Підставивши (2.44) в (2.45) отримано:

Ldnn 2=11Lm . (2.46)

Після підстановки (2.46) в (2.28) визначено, що термін створення

навчальної вибірки для ГНМ типу dnn2 становить:

t dnn2 , ds=1100ϑ nm Lm . (2.47)

Зазначимо, що для гібридної навчальної вибірки мінімально достатня

кількість навчальних прикладів розраховується так:

Ldnn 2=50N x N y . (2.48)

Враховуючи (2.45) отримано:

Lm ≈4,54 N x N y . (2.49)

Після підстановки (2.49) в (2.47) отримано вираз (2.50), що може бути

використаний для остаточного розрахунку терміну формування навчальної

вибірки для повнозв’язних ГНМ, при навчанні яких використовується

процедура переднавчання.

t dnn2 , ds=5000ϑnm N x N y . (2.50)

Для визначення загального терміну побудови повнозв’язних ГНМ, при

навчанні яких використовується процедура переднавчання не передбачена в

вираз (2.26) підставлені вирази (2.50) та (2.34). Отримано:

t dnn1=5000ϑ mN x N y+kdnn2 λe−ε L2
(N x+N y)

2, (2.51)

де t dnn2 – термін побудови ГНМ типу dnn2.

Після тривіальних спрощень (2.51) визначено:

t dnn2=kdnn 2 λe−ε L2 (N x
2
+N y

2)+2N x N y (25000❑nm+kdnn2 λ e−ε L2), (2.52)

де ❑nm – термін створення одного не маркованого прикладу.

Для визначення загального терміну побудови ГНМ типу ЗНМ з прямим

поширенням сигналу в вираз (2.26) підставлені вирази (2.29) та (2.38). В

результаті підстановки визначено:

50

t dnn3=20N x N y+kdnn3 λ e−ε L2
(N x+N y) N x

2, (2.53)

де t dnn3 – термін побудови ГНМ типу dnn3.

Після перетворень на спрощень отримано:

t dnn3=20❑mN x N y+kdnn3 λe−ε L2 (N x
3
+N y N x

2) . (2.54)

По аналогії з (2.54) отримано вираз для розрахунку загального терміну

побудови рекурентних ЗНМ:

t dnn 4=20❑m N x N y+kdnn 4 λe−ε L2 (N x
3
+N y N x

2) , (2.55)

де t dnn 4 – термін побудови ГНМ типу dnn4.

Відзначимо, що вирази (2.54) та (2.55) відрізняються лише

коефіцієнтами пропорційності k dnn. Таким чином вирази (2.42, 2.52, 2.54, 2.55)

визначають загальний термін побудови ГНМ типу dnn1, dnn2, dnn3 та dnn4

відповідно.

Зазначимо, що для dnn1, dnn3 та dnn4 необхідна мінімальна кількість

навчальних прикладів розраховується за допомогою виразу (2.27). В

результаті підстановки (2.27) в (2.42, 2.54, 2.55) отримано:

t dnn1=400kdnn 1 λ e− ε N x
2 N y

2
(N x+N y)

2
+20❑m N x N y, (2.56)

t dnn3=400 kdnn 3 λ e−ε N x
2 N y

2 (N x
3
+N y N x

2)+20❑m N x N y , (2.57)

t dnn 4=400kdnn 4 λ e−ε N x
2 N y

2 (N x
3
+N y N x

2)+20❑m N x N y . (2.58)

Для ГНМ типу dnn2 необхідна мінімальна кількість навчальних

прикладів визначається виразами (2.48). В результаті підстановки (2.48) в

(2.52) та деяких спрощень отримано:

 t dnn2=2500 (kdnn 2 λ e−ε N x
2 N y

2
(Nx+N y)

2
+2❑nm N x N y), (2.59)

Базуючись на теоретичних роботах в області НМ [14] визначено, що в

першому наближенні:

k dnn2=kdnn2=kdnn 3=kdnn 4=0.001. (2.60)

k dnn4=0.002. (2.61)

Підставивши (2.60) в (2.56-2.58), а (2.61) в (2.59) отримано:

t dnn1=0.4 λe−ε N x
2 N y

2
(N x+N y)

2
+0.02❑m N x N y, (2.62)

 t dnn2=2.5 (λe−ε N x
2 N y

2
(N x+N y)

2
+2❑nm N x N y), (2.63)

t dnn3=0.4 λ e−ε N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑m N x N y , (2.64)

t dnn 4=0.8 λe−ε N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑m N x N y . (2.65)

51

Також шляхом експертного оцінювання визначено, що в системах

антивірусного захисту максимально допустима помилка навчання ГНМ на

тестових даних не повинна перевищувати 0.98. При цьому:

e−0.98 ≈1. (2.66)

Враховуючи (2.65) вирази (2.61-64) спрощені так:

t dnn1=0.4 λ N x
2 N y

2
(N x+N y)

2
+0.02❑mN x N y, (2.67)

 t dnn2=2.5 (λ N x
2 N y

2
(N x+N y)

2
+2❑nm N x N y), (2.68)

t dnn3=0.4 λ N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑mN x N y , (2.69)

t dnn 4=0.8 λ N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑mN x N y . (2.70)

Сучасні інструментальні засоби розробки НММ, орієнтовані на хмарні

обчислення та дозволяють розпаралелити процес навчання. Врахувати

вказану можливість в виразах (2.67-2.70) можливо шляхом введення в ці

вирази відповідного коефіцієнта, що зумовлює зміну запису цих виразів:

t dnn1=0.4
λ
q

N x
2 N y

2
(N x+N y)

2
+0.02❑m N x N y, (2.71)

 t dnn2=2.5(λq N x
2 N y

2
(N x+N y)

2
+2❑nm N x N y), (2.72)

t dnn3=0.4
λ
q

N x
2 N y

2
(N x

3
+N y N x

2
)+0.02❑m Nx N y , (2.73)

t dnn 4=0.8
λ
q

N x
2 N y

2
(N x

3
+N y N x

2
)+0.02❑m N x N y . (2.74)

де q – коефіцієнт розпаралелювання процесу навчання (кількість

обчислювальних процесів, що реалізують навчання НММ).

При цьому коефіцієнт q в основному залежить від доступного

апаратного забезпечення процесу розробки НММ. Так на основі даних [6]

сформовано рекомендації по використанню різних апаратних засобів, що

забезпечують ефективне навчання ГНМ. Основні параметри вказаних

апаратних засобів наведено в табл. 2.1. Зазначимо, що кількість потоків

навчання ГНМ в значній мірі залежить також і від параметрів апаратного

забезпечення. Так, наприклад, у випадку застосування сучасних відеокарт

сімейства nVidia та технології CUDA кількість потоків навчання може

досягати 512.

Для більш компактного запису виразів (2.71-2.74) введемо позначення:

52

λ=
λ
q

. (2.75)

де λ – приведена тривалість однієї навчальної ітерації.

Використавши (2.75) в (2.71-2.74) отримано:

t dnn1=0.4 λ N x
2 N y

2
(N x+N y)

2
+0.02❑m N x N y, (2.76)

 t dnn2=2.5 (λ N x
2 N y

2
(N x+N y)

2
+2❑nm N x N y), (2.77)

t dnn3=0.4 λ N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑m N x N y , (2.78)

t dnn 4=0.8 λ N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑mN x N y . (2.79)

Таблиця 2.1

Параметри розповсюджених апаратних засобів, що використовуються для

навчання нейромережевих моделей

Тип апаратного

забезпечення

Перелік вимог

Обсяг

оперативної

пам'яті, ГБ

Кількість

ядер

Кількість

відеокарт

Обсяг пам'яті

окремої

відеокарти, ГБ

Локальний комп'ютер

(робоча станція)

64 10 1 8

Хмарний комп'ютер 100 24 2 12

Кластер 5 1000 16 24

Інтеграція виразів (2.76-2.79) та принципу формування множини

допустимих видів ГНМ (2.5) дозволила записати правило для визначення

множини допустимих видів ГНМ за допомогою виразів (2.80-2.83).

if 0.4 λN x
2 N y

2
(N x+N y)

2
+0.02❑m N x N y≤ tmax→dnn1 ∈DNN avl, (2.80)

if 2.5 (λN x
2 N y

2
(N x+N y)

2
+2❑nm N x N y)≤ tmax→dnn2 ∈DNN avl, (2.81)

if 0.4 λN x
2 N y

2 (N x
3
+N y N x

2)+0.02❑m N x N y ≤tmax→dnn3∈ DNN avl, (2.82)

if 0.8 λ N x
2 N y

2 (N x
3
+N y N x

2)+0.02❑m N x N y≤ tmax→dnn4 ∈DNN avl, (2.83)

де tmax – максимально допустимий термін створення ГНМ.

В базовому випадку можливо вважати, що tmax=tavl

Зазначимо, що в багатьох випадках при створенні антивіруснх засобів

можливо використовувати БД прикладів, які характеризують комп'ютерні

53

віруси. В цьому випадку можливо вважати, що термін створення

маркованого навчального прикладу, як термін створення немаркованого

навчального прикладу дорівнює 0:

❑m=❑nm=0. (2.84)

Підстановка (2.84) в (2.76-2.79) дозволяє записати вирази для оцінки

терміну побудови ГНМ, призначених для розпізнавання комп'ютерних

вірусів у вигляді:

t dnn1 , db=0.4 λ N x
2 N y

2
(N x+N y)

2, (2.85)

 t dnn2 , db=2.5 λ N x
2 N y

2
(N x+N y)

2, (2.86)

t dnn3 , db=0.4 λ N x
2 N y

2 (N x
3
+N y N x

2) , (2.87)

t dnn 4 ,db=0.8 λN x
2 N y

2 (N x
3
+N y Nx

2) . (2.88)

де t dnn1 , db, t dnn2 , db, t dnn3 , db, t dnn 4 ,db- термін побудови ГНМ типу dnn1 , dnn2, dnn3,

dnn4 у випадку доступності БД прикладів, що використовуються для

розпізнавання комп'ютерних вірусів.

 Використавши вирази (2.85-2.88), правило визначення множини

допустимих видів ГНМ у випадку доступності БД діагностичних параметрів

правило визначення множини допустимих видів ГНМ записане за

допомогою виразів:

if 0.4 λN x
2N y

2
(N x+N y)

2 ≤tmax→dnn1∈ DNNavl, (2.89)

if 2.5 λ N x
2 N y

2
(N x+N y)

2 ≤tmax→dnn2∈ DNN avl, (2.90)

if 0.4 λN x
2 N y

2 (N x
3
+N y N x

2)≤ tmax→dnn3 ∈DNN avl, (2.91)

if 0.8 λ N x
2 N y

2 (N x
3
+N y N x

2)≤tmax→dnn4 ∈DNN avl, (2.92)

При формуванні виразів (2.89-2.92) використано розроблений принцип

формування множини допустимих видів ГНМ (2.5). Формування множини

допустимих типів ГНМ дозволило перейти визначення множини ефективних

типів. Використано відповідний заданий виразами (2.6, 2.7) принцип такого

визначення. На першому етапі розробки проведено формування множини

критеріїв ефективності ГНМ. Базою формування стали результати робіт [89-

92], адаптовані до задачі розпізнавання комп'ютерних вірусів та

особливостей доступних видів ГНМ. Адаптація полягала у врахуванні

наступних особливостей процесу розпізнавання комп'ютерних вірусів:

54

- Оскільки довжина програмного/машинного коду, що потрібно

проаналізувати для розпізнавання комп'ютерного вірусу в загальному

випадку може змінюватись, то для розпізнавання можливо застосувати ГНМ,

пристосовані для аналоізу динамічних рядів даних.

- Створення репрезентативних БД сигнатур вірусів є достатньо

складним завданням, тому ГНМ повинні мати можливість навчатись на

навчальних вибірках, невеликих за обсягом.

- Оновлення БД сигнатур вірусів за рахунок внесення в них інформації

про нові типи вірусів досить складно, тому ГНМ повинні мати змогу

навчатись на навчальних вибірках в яких різні типи вірусів представлені

непропорційною.

- Розмітка сигнатур ПЗ є ресурсоємним завданням, відповідно виникає

вимога забезпечення можливості навчання ГНМ на немаркованих даних.

- В роботах [44-46] вказана можливість розпізнавання комп'ютерних

вірусів за рахунок аналізу двовимірного або багатовимірного представлення

програмного коду. Таким чином виникає вимога до можливості врахування

топології вхідних параметрів ГНМ.

- Традиційно важливі вимоги до засобів антивірусного захисту

стосуються терміну та їх побудови, швидкості розпізнавання та

ресурсоємності.

- Основні характеристики ефективності ГНМ стосуються їх

обчислювальної ефективності, точності розпізнавання та стабільності

навчання.

Перелік та короткий опис отриманих критеріїв наведені в табл.2.2.

Враховуючи дані табл. 2.2 вираз (2.7) для визначення ефективності виду

ГНМ модифіковано так:

V (DNN i)=∑
k=1

14

α k H k (DNN i), (2.93)

Відзначимо, що в виразі (2.93) за допомогою вагового коефіцієнта 

враховується значимість k-го критерію ефективності в умовах конкретної

задачі розпізнавання комп'ютерних вірусів. Множину вказаних коефіцієнтів

доцільно визначити шляхом експертного оцінювання. В результаті можна

55

стверджувати, що правило формування множини ефективних видів ГНМ

можливо визначити за допомогою виразу (2.94), а правило знаходження

найбільш ефективного виду ГНМ – за допомогою виразу (2.95).

if V (DNNavl ,i)≥E→ DNNavl , i∈ DNNeff , (2.94)

if V (DNNeff ,k)=max (V (DNNeff ,i))I →DNN i=DNN eff , max, (2.95)

де DNN avl ,i- і-ий допустипий тип ГНМ, множина яких визначається за

допомогою правил заданих виразами (2.80-2.83) та (2.98-2.92);E - мінімально

допустима ефективність; V (DNNeff ,k) - k-ий ефективний тип ГНМ; I – кількість

ефективних типів ГНМ, DNN eff ,max- максимально ефективний тип ГНМ.

Таблиця 2.2

Критерії ефективності виду глибокої нейронної мережі

 Критерій Опис критерію

H1 Аналіз динамічних рядів даних

H2 Мінімальний обсяг навчальної вибірки

H3 Непропорційність прикладів навчальної вибірки

H4 Навчання на не маркованих прикладах

H5 Врахування топології вхідних параметрів

H6 Швидкість навчання

H7 Швидкість розпізнавання

H8 Похибка навчання

H9 Похибка розпізнавання

H10 Ресурсоємність навчання

H11 Ресурсоємність розпізнавання

H12 Обчислювальна ефективність

H13 Стабільність навчання

H14 Апробованість в задачах розпізнавання комп'ютерних вірусів

Розглянемо використання отриманих правил при вирішенні однієї із

найбільш актуальних в області антивірусного захисту задачі розпізнавання

веб-орієнтованих комп'ютерних вірусів.

Можливо стверджувати, що при розпізнаванні вхідні параметри ГНМ

56

можливо асоціювати з потенційно небезпечними функціями скриптової мови

програмування JavaScript, на якій написана переважна більшість сучасних

вірусів такого типу. Кількість таких функцій не перевищує 200. Також

базуючись на даних [16] можливо стверджувати, що кількість класів таких

вірусів не перевищує 100. Тобто N x=200, N y=100.

Для випадку, коли БД діагностичних параметрів відсутні підставивши

ці значення в (2.80-2.83) та провівши тривіальні спрощення отримано:

t dnn1=1,44 ×1013 λ+4 ×102
❑m, (2.96)

 t dnn2=9×1013 λ+103
❑nm, (2.97)

t dnn3=4,8×1012 λ+4×102
❑m , (2.98)

t dnn 4=9,6×1012 λ+4×102
❑m . (2.99)

Після підстановки N x=200, N y=100 в (2.85-2.88) отримано подібні вирази

для розрахунку терміну розробки ГНМ при доступності БД вказаних

діагностичних параметрів:

t dnn1=1,44 ×1013 λ, (2.100)

 t dnn2=9×1013 λ, (2.101)

t dnn3=4,8×1012 λ , (2.102)

t dnn 4=9,6×1012 λ . (2.103)

У випадку приблизних розрахунків можна вважати, що максимально

допустимий термін розробки ГНМ можливо розрахувати так:

t dnn=kdnn×t all, (2.104)

де t dnn - термін розробки ГНМ, k dnn – коефіцієнт пропорційності, t all –

максимально допустимий термін розробки антивірусного засобу.

На основі даних [25] прийнято, що k dnn=0,5, а максимально допустимий

термін розробки антивірусного засобу становить приблизно 1 рік. Це

дозволяє модифікувати вираз (2.104) так:

 t dnn=1,5×107 с. (2.105)

Підставивши (2.96-2.99, 2.105) в (2.80-2.83) отримано вирази (2.106-

2.109), що формують правило визначення допустимих видів ГНМ,

призначених для розпізнавання веб-орієнтованих скриптових вірусів при

відсутності доступу до БД діагностичних параметрів.

if 1,44×1013 λ+4×102
❑m≤1,5×107 →dnn1 ∈DNN avl, (2.106)

57

if 9×1013 λ+103
❑nm ≤1,5×107→dnn2 ∈DNN avl, (2.107)

if 4,8×1012 λ+4×102
❑m≤1,5×107 →dnn3∈ DNNavl, (2.108)

if 9,6×1012 λ+4×102
❑m ≤1,5×107→dnn4∈ DNNavl . (2.109)

Схожа процедура підстановки (2.100-2.103, 2.105) в (2.89-2.92)

дозволила записати вирази (2.110-2.113), що формують правило визначення

допустимих видів ГНМ, призначених для розпізнавання веб-орієнтованих

скриптових вірусів при наявності доступу до БД діагностичних параметрів.

if 1,44×1013 λ≤1,5×107 →dnn1∈DNN avl, (2.110)

if 9×1013 λ≤1,5×107 →dnn2∈DNN avl, (2.111)

if 4,8×1012 λ≤1,5×107 →dnn3∈ DNNavl, (2.112)

if 9,6×1012 λ≤1,5×107 →dnn4 ∈DNN avl . (2.113)

Важливою перевагою розроблених правил формування множини

допустимих та ефективних видів ГНМ, що задані виразами виду (2.80-2.83),

(2.89-2.92), (2.94, 2.95), (2.106-2.113) є їх залежність тільки від таких умов

задачі створення НМЗ розпізнавання як:

 Характеристики апаратного забезпечення.

 Ресурси на створення БД навчальних прикладів.

 Характеристики комп'ютерних вірусів, що підлягають

розпізнаванню.

При цьому особливості доступних типів ГНМ враховані в

математичному забезпеченні сформованих правил. Це дозволяє уникнути

довготривалих експериментів пов'язаних з формуванням множини

допустимих і ефективних видів ГНМ та забезпечує можливість автоматизації

такого формування, що значно знижує вимоги до кваліфікації розробників

НМЗ антивірусного захисту.

58

РОЗДІЛ 3. НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ТА МЕТОДИ

РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ

3.1. Модель формування параметрів навчальних прикладів глибокої

нейронної мережі

Відповідно результатів досліджень, наведених в п. 2.1, та даних [11, 12]

модель формування параметрів навчальних прикладів ГНМ повинна

забезпечувати можливість використання в якості вхідних параметрів

закодованих значень:

− викликів API-функцій (ψapi);

− байт-послідовності N-грамів (ψbs);

− опкодів, вилучених з дизасебльованих файлів (ψopc);

− результатів статистичного аналізу зразків шкідливих та безпечних

програм (ψst);

− значень регістрів 32-розрядних та 64-розрядних процесорів EAX,

EBX, EDX, EDI, ESI, EBP, RAX, RBX, RDX, RDI, RSI, RBP (ψreg);

− параметрів графів викликів API-функції (ψgr);

− бінарного двохвимірного представлення програмного коду (ψbin);

параметрів PE-заголовку файлу (ψ pe);

− параметрів графу залежностей значень та станів програмного

забезпечення (ψdvs).

Таким чином перетворення вхідної інформації моделі у набір вхідних

параметрів ГНМ описується виразами виду:

F fpe (Ψ)=X , (3.1)

Ψ= {ψapi ,ψbs ,ψopc ,ψst ,ψreg ,ψgr ,ψbin ,ψpe ,ψdvs} , (3.2)

59

де X –множина вхідних параметрів ГНМ,  - множина типів

діагностичих параметрів ПЗ.

З метою забезпечення релевантності впливу всіх вхідних параметрів на

результати розпізнавання в моделі передбачено їх нормалізація. В базовому

варіанті для цього пропонується використовувати вираз типу:

x i=
ψ i−ψmin

ψmax−ψ min
, (3.3)

де x i – значення і-го вхідного параметру ГНМ, ψ i – значення і-го

діагностичного параметру, ψmax ,ψmin – максимальне та мінімальне значення

діагностичного параметру.

У випадку, коли зареєстровані діагностичні параметри мають не

числовий, а категоріальний (символьний) характер передбачено їх попередня

обробка за допомогою виразів типу:

Ψ={ψ }G, (3.4)

ψg=g ,g=1...G , (3.5)

де Ψ – множина діагностичних параметрів, G – кількість діагностичних

параметрів.

Основною особливістю моделі формування параметрів навчальних

прикладів ГНМ є можливість створення навчальних прикладів на основі

параметрів графу залежностей значень та станів програмного забезпечення.

Це забезпечило адаптацію ГНМ до вимогу щодо можливості розпізнавання

обфускованого програмного коду, що в свою чергу зумовило використання в

моделі процедури деобфускації. Розробка такої процедури базувалась на

особливостях процесу обфускації.

Зазначимо, що і при розробці шкідливого ПЗ і у випадку застосування

обфускації для захисту авторських прав логіка обфускації полягає у тому,

щоб виключити з програмного коду більшість очевидних зв'язків, тобто

трансформувати його таким чином, щоб вивчення і модифікації

обфускованої програми було більш складною и витратної задачею ніж

побудова нового алгоритму [1-4]. При цьому процедура обфускації має

виконуватися в автоматичному режимі і характеризуватися мінімальнім

кошторисом.

60

Для наведення точного визначення процесу обфускації введено

наступні поняття:

- Початкового програмного коду.

- Процес трансформації.

- Множина алгоритмів, що виникають внаслідок трансформації –

трансформований програмний код.

В результаті процес трансформації можливо записати у вигляді

процедури, заданої виразом виду:

. (3.6)

де - початковий програмний код; - процес трансформації;

{ }- множина трансформованих алгоритмів.

При цьому, процес трансформації призводить до обфускації

програмного коду при відповідності наступним вимогам:

1. Програмний код { } функціонує аналогічно програмному

коду ;

2. Програмний код { } суттєво відрізняється від програмного

коду ;

3. Застосування відомих алгоритмів реверсивної інженерії по

відношенню до програмного коду { } не є ефективним;

4. Застосування відомих алгоритмів детрансформації програмного коду

{ } у програмний код не є ефективним;

5. Кожне застосування процедури трансформації програмного коду

 створює новий програмний код { }, особливості побудови

якого неможливо передбачити.

Розглянемо застосування розробленої процедури (3.1) для формалізації

основних видів алгоритмів обфускації. Зазначимо, що відповідно [4, 5]

класифікують дві основані групи таких алгоритмів:

1. Загальні (абстрактні) обфускаційні алгоритми.

61

2. Програмно орієнтовані алгоритми обфусикації.

Алгоритми обфускації першого типу не пов’язані з особливостями

мови програмування і можуть бути використані навіть по відношенню до

асемблерного коду. Більш ефективним вважається побудова обфускатора на

основі абстрактного алгоритму процедури, що використовує всі переваги

конкретного коду ПЗ [1-4].

Розглядаючи різновиди обфускаційних алгоритмів доцільно почати з

даної загальної схеми, а далі проводити аналіз методів, що можуть бути

використані при її застосуванні. Серед абстрактих алгоритмів обфускації

найбільш універсальним є алгоритм Колберга (Collberg). Структура

алгоритму Колберга показана на рис.3.1.

62

Рис. 3.1. Схема обфускації програмного коду за алгоритмом Колберга

Виконання алгоритму Колберга можна умовно поділити на наступні

чотири базові етапи:

1. Завантаження елементів програмного коду ;

2. Завантаження бібліотек;

63

3. Циклічний процес проведення процедури трансформації

шляхом виділення фрагменту коду, що повторюється до досягнення

необхідного рівня чи перевищення ресурсоємності системи;

4. Генерація програмного коду .

Вхідними даними алгоритму Колберга являються:

1. Вихідні елементи програмного коду (C – Code)

2. Стандартні бібліотеки, що використовуються у програмному коді

;

3. Методі трансформації програмного коду (T – Transformation);

4. Фрагмент програмного коду (S – Segment), що підлягає

трансформації;

5. Набір функцій, що визначають ефективність (E – Efficiency)

методів трансформації;

6. Набір функцій, що визначають важливість фрагменту коду S;

7. Максимально допустимий об’єм системних ресурсів, що можуть

бути використані для обфускації (A – Accept Cost);

8. Параметр, що вказує на необхідний рівень обфускаціі фрагменту

програм-ного коду (R – Require Obfuscation).

Алгоритм Колберга представляє собою загальну схему процесу

обфускації. При цьому спеціалізовані алгоритми, хоча і використовують

вказаний алгоритм, однак мають певні відмінності. Ці відмінності

визначаються методами обфускації, що можуть бути класифіковані як:

1. Лексична обфускація.

2. Обфускація даних.

3. Обфускація керування.

Лексична обфускація дозволяє швидко і без значних витрат апаратного

ресурсу перевести програмний код у форму, яка не піддається аналізу

програміста, але при цьому даний метод є надзвичайно нестійким по

відношенню до алгоритмів деобфускації.

Обфускація даних, що полягає у трансформації структур даних

відноситься до групи більш складних методів. Методи обфускації даних

64

можна класифікувати розклавши на три підгрупи:

1. Обфускація збереження, що включає у себе зміну інтерпретацію

типів даних до форм незручних для аналізу, перехід між глобальним та

локальним збереженням даних, переведення статичних даних (що включають

строки програмного коду) у процедурні, перехід від змінних до масивів

змінних, а також кодування змінних.

2. Обфускація з’єднання, що полягає у об’єднанні змінних,

реструктуруванні масивів і зміні ієрархії наслідування класів.

3. Обфускація перевпорядкування, що включає у себе зміну

послідовності оголошення змінних та перевпорядкування процедур і

функцій.

Дослідження підгруп обфускації даних показує, що дана група методів

вимагає суттєве збільшення апаратного ресурсу, але також є більш стійкою

до деобфускації.

Обфускація керування полягає у заплутуванні послідовності виконання

програмного коду. Алгоритми даного методу захисту ґрунтуються на

використанні непрозорих предикат. Зазначимо, що предикат вважається

непрозорим в тому випадку, коли результати його виконання є невідомими.

При цьому, предикат, що завжди повертає значення “True” позначається як

, а предикат, що завжди повертає значення “False” позначається як , а

предикат, що може повертати одне з двох значень позначається як .

На рис. 3.2-3.4 показано три основні алгоритми обфускації програмного

коду з використанням непрозорого предиката. Загальна схема полягає у тому,

що блок програми розбивається на два блоки і , з’єднані через

непрозорий предикат , чи .

Структура загальної схеми наведена на рис. 3.2. Згідно зі схемою 3.2

блоки і об’єднуються через непрозорий предикат , при цьому для

деобфускатора неочевидно, що блок виконується завжди.

65

Рис. 3.2 Загальна схема алгоритму обфускації на базі непрозорого предикату

На рис. 3.3 показано вдосконалення даної схеми шляхом додавання у

фальшиву гілку блоку , що містить набір операцій, який є складним для

аналізу деобфускатору і при цьому ніколи не виконується згідно функції

непрозорого предикату .

Рис. 3.3 Схема алгоритму обфускації на базі непрозорого предикату з

використанням фальшивої гілки виконання програми

66

Схема показана на рис. 3.4 вказує на можливість застосування у

алгоритмі обфускації керування непрозорого предикату типу .

Рис. 3.4 Схема алгоритму обфускації на базі непрозорого предикату типу з

використанням фальшивої гілки виконання програми

Cхема обфускації із застосуванням непрозорого предикату зумовлює

необхідність виконання обох гілок, тому включає у себе два блоки:

- оригінальніий блок ,

- трансформовану версію , що виконує ту саму функцію, шо й

, але використовує інший код.

Таким чином у рамках застосування обфускації керування блоку

програмного коду зумовлює вкладання алгоритмів обфускації у рамках

окремих складових даного блоку.

Також слід зазначити, що непрозорі предикати можуть поділятися на:

 - локальні;

- глобальні;

- міжпроцедурні.

Локальні предикати обчислюються при виконанні кожного окремого

67

виразу. Глобальні предикати обчислюються при виконанні кожної окремої

процедури, а міжпроцедурні - обчислюються при виконанні кількох

процедур.

Ефективність алгоритмів обфускаціі керування у першу чергу залежить

від непрозорих предикат, що мають бути достатньо стійкими і гнучкими у

використанні. При цьому з точки зору використання апаратних ресурсів

важливими параметрами є час виконання предикату та кількість операцій, що

застосовуються при його використанні. Функції предиката для збільшення

стійкості перед деобфускаційними алгоритмами, що базуються на технології

статичного аналізу, мають мало відрізнятися від функцій ПЗ.

До обфускації керування також відносяться методи обчислювальної

обфускації. Найбільш ефективний алгоритм обчислювальної обфускації

відомий як алгоритм розширення умов циклів, як і в попередньому випадку

базується на непрозорому предикаті, що імітує вплив на кількість виконань

циклічного коду. Іншою ефективною схемою є алгоритм ліквідування

бібліотечних викликів. Якщо програмне забезпечення використовує функції

стандартних бібліотек, механізм роботи даних елементів програми буде

відомим, що допоможе у процесі реверсивної інженерії. Тому імена функцій

стандартних бібліотек також трансформують у рамках процесу обфускаціі.

Одним з варіантів даного підходу є використання у програмному

забезпеченні власної версії бібліотек (що будується шляхом трансформації

стандартних бібліотек), це не впливає на час виконання програми, але

суттєво збільшує розмір програми.

Розроблені структурні схеми алгоритмів обфускації програмного коду

дозволили перейти до розробки процедуру деобфусікації. Вказана процедура

базується на запропонованому принципі представлення процесу

функціонування програмного забезпечення у вигляді графа залежностей

значень та станів. Зазначимо, що формалізований опис даного принципу

визначається виразами (2.9-2.11).

Проведений аналіз відомих методів деобфусикації програмного коду

комп’ютерних вірусів дозволяє стверджувати, що процедура деобфускації

багато в чому може бути подібна до процедури оптимізації програмного

68

коду. Адже в процесі обфускаціі в програмний код часто додаються зайві

операції та порушується його структура, що не впливає на функціональність

програми, зашкоджує процесу вивчення алгоритмів функціонування. При

цьому процес оптимізації, так само, як і процес деобфускації спрямований на

ліквідацію зайвих операцій, тому на технічному рівні їх можна відносити до

одного виду процесів.

Слід зазначити, що у такому разі, в ролі деобфускатора може виступати

компілятор вихідного коду, який автоматично здійснює процес оптимізації і,

тим самим, зменшує ефективність обфускації високого рівня. Для виконання

програми на стороні серверу замість компілятора може використовуватися

інтерпретатор, що не вносить змін до програмного коду, в інших випадках

слід застосовувати обфускацію рівня асемблерного чи машинного коду.

Також у якості базового деобфускаційного методів можна розглядати

процедуру декомпіляції, яка дозволяє на основі машинного коду отримати

текст програми на мові високого рівня, який буде зрозумілим для спеціаліста

з реверсивної інженерії. Але відкритий код декомпіляційних алгоритмів

дозволяє при розробці превентивних обфускаційних алгоритмів запобігти

даному методу деобфускації.

Сучасні алгоритми є більш складними ніж стандартний процес

декомпіляції і можуть бути класифіковані наступним чином:

1. Методи, що базуються на пошуку непрозорих предикатів.

2. Співставлення за зразками подібного програмного забезпечення чи

подібних деобфускованих фрагментів.

3. Виявлення у програмному коді типових фрагментів, що не є

функціональними.

4. Статистичний аналіз, що може бути використаний як у самому

процесі деобфускації програмного коду так і для перевірки його коректності.

5. Динамічний аналіз потоку даних, що базується вивченні змін у

функціональних елементах програми, що виникають у процесі роботи.

При цьому застосування графів можна розглядати як універсальний

засіб, що може бути використано у багатьох алгоритмах деобфускації.

69

Сучасні алгоритми деобфускації, характеризуються наступними

тенденціями побудов структури графів:

- Зменшення ролі призначень (assignment) графу, як засобу за

допомогою якого інформація переноситься між операціями;

- Зменшення ролі потоку керування (control flow), що через ребра

графу упорядковує фрагменти програмного коду;

- Зменшення ролі неявних залежностей (dependencies graph), для

ідентифікації яких необхідно провести аналіз і знайти оператори, що

визначають їх значення.

Граф залежностей значень і станів (Value State Dependence Graph)

цілком відповідає зазначеним вимогам. У даному графі призначення не

використовуються, поток керування застосовується лише для визначення

відповідних значень значень операцій, а залежності казуються явно,

включаючи умови, за яких воним мають місце. В термінології теорії графів

[7, 8] граф залежностей значень і станів (ГЗЗС) може бути визначено як

напрямлений позначений ієрархічний граф типу , що

складається з функціональних елементів показаних на рис. 3.5.

70

Рис. 3.5 Внутрішня структура графу залежностей значень і станів, що базується на ребрах,

переходах та місцях

До вказаних елементів відносяться:

1. Переходи (Transitions) — вузли, що відповідають

операціям;

2. Місця (Places) — вузли, що відповідають результатам

операцій;

3. Ребра (Edges) — залежності від результатів операцій;

4. Функція розмітки (Labeling function) відповідає кожній

операції переходу;

5. Аргументи (Arguments) вказують на місця, які містять

аргументи функцій на вході;

6. Результати (Results) вказують на місця, які містять

результати виконання функцій.

Кожне місце та кожне ребро графу типізується за значенням або

станом. Тип ребра визначається кінцевими точками: ребром стану є ребро,

кінцевою точкою якого є місце стану, ребром значення є ребро, кінцевою

точкою якого є місце значення. Переходи представляють операції ГЗЗС, що

здійснюються за допомогою функції розмітки, через пов'язаний з ними

оператор.

Вхід переходу є місцем, пов’язаним з ним ребром. Можна вважати,

що перехід є споживачем (consumer) місця.

Аналогічно, місце називається виходом переходу , якщо існує

ребро від переходу до цього місця. У даному випадку, можна сказати, що

перехід є постачальником (producer) місця.

Набір входів переходу називається операндами переходу або входами

, а набір виходів називається результатами переходу або виходами .

При формуванні ГЗЗС з метою використання при деобфускаціі

потенційно шкідливого ПЗ та оптимізації коду слід дотримуватись наступних

вимог:

71

1. Ациклічність: у ГЗЗС не використовуються графо-

теоретичні коди.

2. Арність вузла: для кожного місця має існувати унікальний

постачальник (тобто обумовлюється наявність окремего ребра

).

3. Лінійне застосування станів: стани виступають у ролі

споживача не більше одного разу.

При використанні ГЗЗС у алгоритмах деобфускації програмного коду,

компіляторах та декомпілятораторах більш ефективним є визначення, що в

якості функціональних елементів використовує вузли. Згідно з даним

визначення ГЗЗС є напрямленим позначеним ієрархічним графом

 , що включає до своєї внутрішньої структури наступні

складові:

- Вузли відповідають операціям з , , що

позначають входи вузла, а також операціям з , , що позначають

виходи вузла;

- Ребра де і — залежності від

результатів операцій, тип ребра залежить від його місця.

- Функція розмітки відповідає кожній операції переходу.

- Вхідні вузли , де відповідають за входи функцій.

- Вихідні вузли , де , відповідають за виходи

функцій.

Внутрішня структура графу залежностей значень та станів, що

базується на ребрах та вузлах наведена на рис. 3.6. Важливо вказати, що

ребра ГЗЗС мають бути одного типу, а вузли характеризуються наступною

системою рівнянь:

. (3.7)

Для вхідних вузлів є додаткові умови:

. (3.8)

72

Аналогічно для вихідних вузлів справедливо:

. (3.9)

Вузли, що використовуються у ГЗЗС, можна поділити на три типи:

- вузли обчислення,

- -вузли,

- комплексні вузли.

Вузли обчислення моделюють прості низькорівневі операції. Вони,

свою чергу, можуть бути поділені на наступні види:

- вузли значень, що містять вхідні та вихідні значення без

застосування додаткових дій,

- вузли констант, що подібні до вузлів значень, але не мають входів.

73

Рис. 3.6. Внутрішня структура графу залежностей значень та станів, що базується на

ребрах та вузлах

Вузли станів мають змішані входи та виходи і представляють операції

додатковими діями, наприклад, такими як завантаження (load) або зберігання

(store). У свою чергу -вузли використовуються для вираження зумовленої

74

поведінки для ГЗЗС.

Вказані вузли на основі вхідного здійснюють мультиплексування

(multiplex) між двома наборами операндів і , виступаючі у ролі функції

предикату. Слід зазначити, що для здійснення даної операції операнди обох

наборів мають характеризуватися одним типом , так само як і результат

виконання -вузла. Характерно, що -вузли у ГЗЗС єдиним типом вузлів, що

демонструє неузгоджену поведінку. Комплексні вузли також називають

областями (regions). Область містить окремий граф (distinct graph) , на який

область, власне, можна і замінити. Характерно, що граф сам може містити

області, а отже області, як окремий тип вузлів ГЗЗС, формують іерархічні

структури. Під час процесів оптимізації та деобфускації програмного коду

області за певних умов можуть переходити від зовнішніх до внутрішніх і

навпаки. Але при цьому слід пам’ятати властивість вкладання (nesting

property), що накладає обмеження на ребра, що мають обєднувати вузли

лише однієї області або підпорядковану область (child region). Окремим

видом комплексних вузлів є вузли, загальна структура якого показана на

рис. 3.7.

Рис. 3.7. Загальна структура -вузла.

75

У ГЗЗС -вузол використовується виключно для моделювання циклів.

Ілюстрацією такого використання є рис. 3.8, на якому наведена структурна

схема циклу ГЗЗС з використанням -вузла.

76

Рис. 3.8. Внутрішня структура тіла циклу з використанням -вузла.

Подібно до -вузлів -вузол представляє собою окремий граф, але

даний граф не заміняє собою вузол, тому що може являти собою

нескінченний цикл, що і показано на рис. 3.8.

Слід зауважити, що на рис. 3.7, 3.8 семантика вузла показана як така,

що базується на циклах, що керуються у кінці (tail controlled loop). Така

структура вузла є базовою для ГЗЗС, але не обов’язковою [7, 8].

Розглянемо застосування ГЗЗС на прикладі програми написаної на мові

Сі де обчислюється простий математичний вираз типу:

z=z+x*y. (3.10)

Зазначимо, що в виразі (3.7) змінні , , та z передаються в функцію по

їх значенням. Лістинг відповідного програмного коду, написаного на мові

програмування Сі, наведено на рис. 3.9.

Рис. 3.9. Лістинг програмного коду, для обчислення елементарного математичного виразу

При розрахунку виразу (3.7) функцією fcalc оператор «return» повертає

результат обчислення. Також зазначимо, що дана функція має тип «int32» –

тобто тип 32-бітної цілої змінної зі знаком, що є стандартним для бібліотек

Сі. Відповідний до лістингу рис. 3.9 граф типу ГЗЗС показано на рис. 3.10.

Даний елементарний приклад наочно демонструє використання у ГЗЗС

ребер станів та значень. При цьому ребра станів позначено пунктирною

лінією.

77

Як показано на рис. 3.10, у випадку коли порядок утримання вузлів

значень («Product» і “Sum”) підтримується автоматично, то вузли станів

організуються за допомогою ребер станів.

Рис. 3.10. Схема графу залежностей значень та станів для програмного коду, що реалізує

обчислення елементарного математичного виразу

78

Таким чином в даній схемі виникає потреба в тому, щоб вузел «Store»

отримував на вході старий стан і давав на виході новий стан, що виконує

роль входу для другого вузла “Load”. Слід також зазначити, що другий вузел

“Load” додано лише для більшої наочності графу і у більш компактній схемі

його можна було замінити вузлом «Return».

На рис. 3.11 показано більш складний приклад лістингу програми, що

обчислює факторіал заданого числа («uint32» – тип 32-бітної цілої змінної

без знаку).

Рис. 3.11. Лістінг програмного коду, що реалізує обчислення факторіалу

Наведений алгоритм з циклом дозволяє проілюструвати використання у

ГЗЗС - і -вузлів (межі -вузла на рисунку позначено пунктирною лінією).

Схема графу залежностей значень та станів для програмного коду, що

реалізує обчислення факторіалу наведена на рис. 3.12. Зазначимо, що цикл

алгоритму керується у блоці head controlled loop, а тому -вузли мають бути

розташовані навколо -вузлів, причому для випадку, коли жодна ітерація

циклу не має бути виконана, застосовується хибна гілка (false branch) у той

час як сама структура циклу розташовується у істинній гілці (true branch).

Таким чином, в результаті розробки отримана модель формування

параметрів навчальних прикладів ГНМ, на відміну від відомих, забезпечує

подання програмного забезпечення у вигляді ГЗЗС, базова структура якого

показана на рис. 3.6, а особливості реалізації показані на рис. 3.7-3.12. В

аналітичному вигляді вказаний граф можливо записати за допомогою виразів

виду (3.11-3.15).

G (N ,E , L ,N 0 , N 1), (3.11)

79

N (IST ,T ,OST), (3.12)

E=OSN 1×ISN 2, (3.13)

N0 (IST ,T ,OST), (3.14)

Рис. 3.12. Схема графу залежностей значень та станів для програмного коду, що реалізує

обчислення факторіалу

80

N∞ (IST , T ,OST), (3.15)

де N - множина, що відповідають операціям з вхідною та вихідною

інформацією вузлів; E - ребра, що відповідають результатам операцій; L –

множина функцій розмітки, що відповідають кожній операції переходу; N0 -

вхідні вузли, що відповідають входам функцій; N∞ - вихідні вузли , що

відповідають виходам функцій.

В базовому варіанті множина діагностичних параметрів, яка відповідає

параметрам ГЗЗС визначається виразом (3.16), що забезпечує можливість

нейромережевого розпізнавання обфускованого програмного коду,

характерного для сучасних поліморфних вірусів.

ψdvs= {N ,E , L ,N 0 , N∞ }, (3.16)

де ψdvs – множина діагностичних параметрів для розпізнавання

комп'ютерних вірусів визначена на основі ГЗЗС.

3.2. Метод визначення архітектурних параметрів глибокої

нейронної мережі

Метод базується на розроблених принципах використання ГНМ для

розпізнавання комп’ютерних вірусів, моделі правил визначення ефективних

видів ГНМ та моделі формування параметрів навчальних прикладів ГНМ, що

задані виразами (2.5-2.8), (2.12, 2.80-2.83, 2.89-2.95) та (3.1-3.9, 3.11)

відповідно.

Перетворення інформації в цьому методі описується виразами виду:

⟨DNNent , ADNN , R , Η ,α ,V , Δd ,M v ,M p , τavl ,Qavl , εavl ⟩→⟨DNNea , Aea⟩ , (3.17)

DNN ent={dnn1 , dnn2 , dnn3 , dnn4 } , (3.18)

ADNN= {Adnn1
, Adnn

2
, Adnn

3
, Adnn

4} , (3.19)

де Η – множина критеріїв ефективності виду ГНМ, R – множина

значень критеріїв ефективності, α – множина вагових коефіцієнтів

критеріїв ефективності видів ГНМ, DNNent – множина доступних типів ГНМ,

ADNN – множина, що містить архітектурні параметри різних типів ГНМ, Adnn1

81

– множина архітектурних параметрів ГНМ без переднавчання, Adnn2 –

множина архітектурних параметрів ГНМ з переднавчанням, Adnn3 – множина

архітектурних параметрів ЗНМ з прямим поширенням сигналу, Adnn4 –

множина архітектурних параметрів рекурентних ЗНМ, DNN ea – множина

найбільш ефективних та апробованих видів ГНМ, Aea – архітектурні

параметри найбільш ефективних та апробованих видів ГНМ, Δd –

допустиме значення функції ефективності виду ГНМ, V – множина видів

комп’ютерних вірусів, що мають бути розпізнані, M v – множина

доступних портретів комп’ютерних вірусів, M p – множина портретів

безпечних програм, τavl – допустимий термін побудови ГНМ, Qavl –

допустима ресурсоємність побудови ГНМ, ε avl – допустима похибка

розпізнавання.

Метод передбачає виконання 6 етапів.

Структурно-аналітична схема даного методу показана на рис.3.13.

Етап 1 – визначення основних умов застосування ГНМ.

Вхідними даними етапу є множини комп'ютерних вірусів, що

підлягають розпізнаванню (V) та множини доступних портретів

комп’ютерних вірусів (M v).

Крім того до вхідних даних етапу відносяться: множина портретів

безпечних програм (M p), допустимого терміну розробки ГНМ

розпізнавання (τavl), допустимої ресурсоємності побудови ГНМ (Qavl), та

допустимої похибки розпізнавання комп'ютерних вірусів (ε avl).

Етап розділено на три кроки.

Крок 1. Визначаються вимоги до структури ГНМ

- X - множина вхідних параметрів ГНМ, що формується за

допомогою моделі, розробленої в п. 3.1. В першому наближенні елементи

82

цієї множини еквівалентні нормалізованим значенням діагностичних

параметрів.

- Y - множина вихідних параметрів ГНМ, що співвідноситься з

видами комп'ютерних вірусів, які мають бути розпізнані.

- N x - кількість вхідних параметрів ГНМ, що дорівнює кількості

елементів множини X.

- N y - кількість вихідних параметрів ГНМ.

83

Рис. 3.13. Структурно-аналітична схема методу визначення архітектурних параметрів

глибокої нейронної мережі

84

При цьому:

⟨ X ,Y ,N x , N y ⟩= f (V ,M v , M p). (3.20)

- Kv - кількість видів комп’ютерних вірусів, що мають бути

розпізнані:

K v=f (V). (3.21)

Крок 2. На даному кроці визначаються параметри процесу навчання

- εl - максимально допустима похибка навчання. В першому

наближенні:

ε l=k × εavl. (3.22)

- λ – очікувана приведена тривалість однієї навчальної ітерації, що

визначається виразом виду:

f (L , N x , N y ,Qavl)=λ. (3.23)

Крок 3. Цей крок призначений для визначення параметрів навчальних

даних

- ϑw – середній час, необхідний на створення одного навчального

прикладу з очікуваним вихідним сигналом,

- ϑn – середній час, необхідний на створення одного навчального

прикладу без очікуваного вихідного сигналу.

- L - загальна кількість доступних прикладів комп’ютерних вірусів

та безпечних програм.

f (V , M v ,M p)=⟨ L,ϑ w , ϑn ⟩. (3.24)

- Lmin - мінімально допустима кількість навчальних прикладів, що

розраховується за допомогою виразів (2.20-2.22).

Етап 2 – визначення доцільності використання типу ГНМ

Вхідними даними етапу є множина доступних видів ГНМ (DNNent),

τavl , ϑw , λ , ϑn , Lmin , N x , N y . Етап розділено на три кроки.

Крок 1. На даному кроці визначається термін побудови кожного із

доступних видів ГНМ для випадку відсутності доступу до БД параметрів, які

характеризують комп'ютерні віруси.

t dnni
=f dbn ,i (λ , N x ,N y ,ϑ w , ϑ n) , (3.25)

85

де t dnni – термін побудови і-го виду ГНМ, f dbn, i – вид функціональної

залежності t dnni від кількості вхідних та вихідних навчальних параметрів ГНМ,

приведеної тривалості однієї навчально ітерації прикладів та тривалості

створення одного навчального прикладу, за умови відсутності доступу до БД

навчальних прикладів.

Для і-го виду ГНМ при розрахунку (3.25) використовуються вирази

(2.76-2.79).

Крок 2. На даному кроці визначається термін побудови кожного із

доступних видів ГНМ для випадку наявності доступу до БД прикладів, які

характеризують комп'ютерні віруси:

t dnni
=f db ,i (λ , N x , N y). (3.26)

f dbn, i – вид функціональної залежності t dnni від кількості вхідних та

вихідних навчальних параметрів ГНМ, у випадку доступності БД навчальних

прикладів, що використовуються для розпізнавання комп'ютерних вірусів.

Для і-го виду ГНМ при розрахунку (3.26) використовуються вирази

виду (2.85-2.88).

Крок 3. Визначається множина допустимих видів ГНМ.

if t dnni
≤tavl →dnni∈ DNNavl . (3.27)

Зазначимо, що вираз (3.27) є компактним представленням виразів (2.80-

2.83) для випадку відсутності доступу до БД навчальних прикладів та виразів

(2.89-2.92) при наявності доступу до цих БД.

 Виходом етапу є множина допустимих видів ГНМ DNNavl .

Етап 3 – визначення найбільш ефективної архітектури ГНМ

Вхідними даними етапу являються множина DNNavl , множина

критеріїв ефективності виду ГНМ (R), множина вагових коефіцієнтів

критеріїв ефективності (α) та мінімально допустима величина функції

ефективності (Δd). При цьому:

R={R1 ,R2 ,… RK } , (3.28)

α= {α1 , α2 ,…αK } , (3.29)

де Rk – k-ий критерії ефективності, α k – ваговий коефіцієнт k-го

критерію ефективності, K – кількість критеріїв ефективності (в базовому

86

випадку K=14).

Етап розділено на три кроки.

Крок 1. Для кожного типу допустимого виду ГНМ розраховується

значення функції ефективності.

Ei=∑
k=1

K

α k Rk (dnn i), dnn i∈DNN avl (3.30)

де Ei – функція ефективності для і-го виду ГНМ,

Крок 2. Перевірка допустимості величини функції ефективності для

кожного допустимого виду ГНМ.

if (E i≤ Δd)→dnn i∉ DNN eff (3.31)

Крок 3 . Визначення найбільш ефективних видів ГНМ.

if (E i=max (E1 , E2 ,…E I))→dnni ∈DNN eff (3.32)

Виходом етапу являється множина ефективних видів ГНМ (DNN eff).

Етап 4 – формування параметрів навчальних прикладів.

Етап орієнтовано на формування параметрів прикладів, що входять до

складу навчальної та тестової вибірки ГНМ. Виконання етапу забезпечує

можливість визначення параметрів архітектури найбільш ефективного виду

ГНМ та можливість проведення експериментальних досліджень,

спрямованих на апробацію розробленої ГНМ.

На вхід етапу подаються M v , M p , Kv , L , X , Y , N x ,

N y , DNN eff . Виконання даного етапу передбачає реалізацію. Трьох

кроків.

Крок 1. Кодування даних, що входять до множини доступних портретів

комп’ютерних вірусів (M v) та до множини портретів безпечних програм (M p).

Перетворення інформації на даному кроці визначається виразами виду:

f coding (M v ,M p)→ {Sw , Sn }, (3.33)

Sw={sw
(V k), sw

(P)} , (3.34)

Sn={sn
(V k) , sn

(P)}, (3.35)

де f coding – функція кодування, що визначається виразами (3.4, 3.5); Sw -

множина, що містить приклади портретів ПЗ з очікуваним вихідним

сигналом; Sn - множина, що містить приклади портретів ПЗ без очікуваного

87

вихідного сигналу; sw
(V k) – множина портретів k-го виду комп'ютерного вірусу з

очікуваним вихідним сигналом; sw
(P) - множина портретів безпечних програм з

очікуваним вихідним сигналом; sn
(V k) – множина портретів k-го виду

комп'ютерного вірусу без очікуваного вихідного сигналу; sn
(P) - множина

портретів безпечних програм без очікуваного вихідного сигналу.

Крок 2 . Нормалізація вхідних та вихідних параметрів. Для цього

спочатку для кожного виду комп'ютерного вірусу та безпечних програм

(тобто для кожного елементу множин sw
(V k), sw

(P), sn
(V k), sn

(P)) для кожного вхідного

параметру розраховується його максимальне та мінімальне значення. Тобто

визначаються множини виду:

{x1
max , x2

max ,… xN x

max} , (3.36)

{x1
min , x2

min ,… x Nx

min }, (3.37)

де x i
max, x i

min - максимальне та мінімальне значення і-го вхідного

параметру.

Після цього для кожної із множин sw
(V k), sw

(P) розраховується максимальне

та мінімальне значення кожного із вихідних сигналів. За рахунок цього

визначаються множини виду:

{ y1
max , y2

max ,… yN y

max} , (3.38)

{ y1
min , y2

min ,… yN y

min }, (3.39)

де y i
max, y i

min - максимальне та мінімальне значення і-го вихідного

параметру.

Використовуючи (3.36-3.39) розраховуються нормалізовані значення

кожного із вхідних та вихідних параметрів:

x i=
x i−x i

min

xi
max
−x i

min , (3.40)

y i=
y i− y i

min

y i
max
− y i

min , (3.41)

де x i, y i – нормалізовані значення і-го вхідного та і-го вихідного

параметрів.

Крок 3. Формування навчальних даних, що полягає у визначенні

множин виду:

88

Sw={((x1 , x2 ,…)N x
, (y1 , y2,…)N y

)1 , ((x1 , x2 ,…)Nx
, (y1 , y2 ,…)N y

)2 ,… }, (3.42)

Sn={((x1 , x2,…)N x
)1 ,((x1 , x2 ,…)N x

)2 ,…}, (3.43)

де Sw – множина навчальних прикладів, що містять очікуваний

вихідний сигнал, Sn - множина навчальних прикладів, в яких очікуваний

вихідний сигнал відсутній.

Виходом етапу є
S= {Sw , Sn } – множина навчальних даних ГНМ.

Етап 5 – визначення параметрів архітектури найбільш

ефективного виду ГНМ.

Вхідними даними етапу є DNNeff , множина основних конструктивних

параметрів ГНМ (ADNN), N x , N y , L , а виходом – множина

оптимізованих параметрів ефективних видів ГНМ (Aeff). При виконанні

етапу використовуються, отримані в [84], вирази (3.44-3.48), що визначають

значення архітектурних параметрів для тих видів ГНМ, що входять до складу

DNN eff .

Nh=Round (√
L×N x

N y ×Kh
), (3.44)

де Nh - кількість схованих нейронів в ГНМ типу dnn1 та dnn2; Round -

функція знаходження найближчого цілого числа; Kh - кількість схованих

шарів нейронів, що в базовому випадку дорівнює 2.

ak=
(ak−1−bk+2 rk)

dk

+1, (3.45)

(b×b)k= (5×5) , k=1… K ls , (3.46)

dk=Round (bk /2), (3.47)

Lf ,min=2 (Lh, K+1), (3.48)

Lf ,max=20 Lf , min, (3.49)

де Kls – кількість шарів згортки в ГНМ типу dnn3 та dnn4; bk – розмір k-го

ядра згортки; ak – розмір k-го шару згортки; rk – кількість доповнюючих нулів

для k-го шару згортки; dk- масштабний коефіцієнт для k-го шару підвибірки;

89

Lf ,min, Lf ,max – мінімальна та максимальна кількість нейронів в повнозв'язному

шарі; Lh , K – кількість карт ознак в k-го шарі згортки.

Таким чином, результати розрахунків виразів (3.44-3.49) визначають

складові множини Aeff:

Aeff={Nh , ak , bk , dk , L f , min , L f ,max ,K ls }, (3.50)

Етап 6 – апробація отриманих рішень.

Етап полягає у реалізації експериментальних досліджень, спрямованих

на підтвердження достатньої точності розпізнавання розроблених ГНМ при

їх застосуванні в очікуваних умовах.

Входом етапу є ε avl , τavl , Qavl , DNN eff , Aeff , S , а виходом

DNN ea , Aea . Етап розділено на 5 кроків.

Крок 1. Множина навчальних даних S адаптується до типу ГНМ:

f adaptation (S ,DNN eff)=W
, (3.51)

де W - множина навчальних даних адаптована до виду ГНМ.

Для ГНМ з прямим розповсюдженням сигналу в яких процедура

переднавчання не передбачена, тобто для dnn1, адаптація полягає у

визначенні множини навчальних прикладів, кожен з яких може бути

представлено виразом виду:

w k ,m=({x1 , x2 ,… xN x
}k { y1 , y2 ,… yN y

}k), (3.52)

де w k ,m – k-ий маркований приклад, {x1 , x2 ,…xNx }k – множини вхідних та

вихідних даних для k-го маркованого прикладу.

Для ГНМ з прямим розповсюдженням сигналу в яких процедура

переднавчання передбачена, тобто для dnn2, крім маркованих прикладів,

заданих виразом (3.52) створюються немарковані приклади. Останні

задаються виразом типу:

w k ,nm=({x1 , x2 ,… xN x
}k) (3.53)

де w k ,nm – k-ий не маркований приклад.

По відношенню до dnn1 особливістю формування навчальних даних для

ГНМ типу dnn3, що представляють собою ЗНМ з прямим поширенням

90

сигналу є необхідність представлення вхідних параметрів у вигляді

прямокутного рисунку з одним кольоровим каналом.

Таким чином, для адаптації w k ,m до застосування dnn3 кожен вхідний

параметр типу x iпідлягає перетворенню виду:

g (x i)= ⟨ai , bi , zi ⟩, (3.54)

де a i , bi – координати точки на площині x i в декартовій системі

координат, z i – число, що відповідає кольору точки, g – функція.

Зазначимо, що розробка функції g детально описана в роботах [63, 64] .

Таким чином, навчальні приклади для dnn3, можуть бути представлені

виразами виду:

w k ,mp=({⟨ai , bi , zi ⟩1 , ⟨ai , bi , zi ⟩2 ,… ⟨a i , bi , z i ⟩Nx
}k { y1 , y2 ,… yN y }k), (3.55)

де w k ,mp - k-ий маркований приклад для dnn3.

Основною особливістю рекурентних ЗНМ до яких відносяться ГНМ

типу dnn4 є пристосованість до аналізу динамічних рядів даних, що визначає

необхідність впорядкування навчальних прикладів відповідно номеру черги

подачі їх на вхід НММ. Тобто навчальна вибірка dnn4 є складається з

впорядкованих навчальних прикладів, заданих виразами виду (3.55).

Крок 2. На даному кроці W розділяється на навчальну, тестову та

валідаційну вибірку:

f separation (W)={W l ,W t ,W v } . (3.56)

де Wl – множина тренувальних прикладів, Wt – множина тестових

прикладів, Wv – множина валідаційних прикладів.

В першому наближенні для розподілу прикладів можна скористатись

даними [66], що свідчать про доцільність розподілу прикладів в пропорції

8:1:1.

Крок 3. Даний крок співвідноситься з навчанням ГНМ, побудованої в

результаті виконання попередніх етапів методу.

При цьому враховується маскимально допустимий термін навчання та

допустима ресурсоємність навчання. В аналітичному вигляді реалізація

кроку визначається так:

f training (DNNeff , Aeff ,W l ,W t , τavl ,Qavl)=DNNtr , (3.57)

91

Крок 4. На даному кроці перевіряється розраховується похибка

розпізнавання валідаційних прикладів.

f recognition (DNNtr ,W v)=ε
. (3.58)

Крок 5. Цей крок спрямований на перевірку допустимості похибки

розпізнавання валідаційних прикладів. Реалізація кроку визначається

виразом виду:

if ε ≤ εavl→ (DN N ea=DN N eff ∧ Aea=A eff)
else (DN N ea=∅∧ Aea=∅)

, (3.59)

В результаті виконання п'ятого кроку визначається множина

апробовано ефективних видів ГНМ (DNNea) та множина ефективних

параметрів таких ГНМ (Aea). Значення елементів цих множин і є виходом

даного методу.

Зазначимо, що за рахунок застосування рішень, запропонованих в п.

2.2, 2.3, 3.1, описаний метод визначення архітектурних параметрів глибокої

нейронної мережі забезпечує можливість зменшення обсягу

експериментальних досліджень, пов’язаних з визначенням архітектурних

параметрів ГНМ, призначеної для використання в НМЗ розпізнавання

комп’ютерних вірусів.

3.3. Метод нейромережевого розпізнавання комп’ютерних вірусів

Метод базується на розробленій моделі формування параметрів

навчальних прикладів глибокої нейронної мережі та розробленому методі

визначення архітектурних параметрів глибокої нейронної мережі.

Вхідними даними методу є:

- Qнмз – вимоги до НМЗ розпізнавання комп’ютерних вірусів,

- Хапз – характеристики апаратно-програмного забезпечення НМЗ,

- Rнмз – ресурси на розробку НМЗ,

- Енмз – експертні дані для побудови НМЗ,

- DNNent – доступні види НММ,

- A DNN – параметри DNNent,

- V – множина видів комп’ютерних вірусів, що мають бути розпізнані,

92

- БД – бази даних, в яких міститься інформація, що може бути

використана для формування портретів комп’ютерних вірусів та портретів

безпечних програм,

- G – процедури, що визначають ефективність НМЗ,

- U – визначена множина критеріїв ефективності,

 -De – експертні дані для оцінки значущості критеріїв ефективності, що

входять до складу U.

Виходом методу є:

-H eff– параметри верифікованих НМЗ,

- Seff – сигнал, що свідчить про достатню чи недостатню ефективність

побудованого НМЗ.

Структурна схема методу нейромережевого розпізнавання

комп’ютерних вірусів показана на рис. 3.14.

Рис. 3.14 Структурна схема методу нейромережевого розпізнавання вірусів

93

Перетворення інформації в даному методі описується виразами виду:

⟨Qнмз , Xапз , Rнмз ,Eнмз , DNN ent , Aнмз ,V , DB,G ,U ⟩→ ⟨H eff , Seff ⟩, (3.60)

Метод передбачає виконання 5 етапів.

Етап 1 – визначення умов створення та застосування НМЗ.

На цьому етапі за допомогою процедури експертного оцінювання

визначаються умови створення та застосування НМЗ розпізнавання

комп’ютерних вірусів. Вхідними даними етапу є Qнмз, Хапз, Rнмз, Енмз. Виходом

етапу є параметри, що відповідають умовам: нв – формування навчальної

вибірки, гнм – розробки ГНМ, апз – використання АПЗ, чп – часу

застосування НМЗ. Функціональна залежність між вхідною та вихідною

інформацією даного етапу описуються виразом виду:

f (Q нмз , Xапз ,Rнмз , Eнмз)→ ⟨Θнв ,Θгнм ,Θапз ,Θчс , ⟩, (3.61)

Зазначимо, що при реалізації (3.61) доцільно застосовувати процедури

експертного оцінювання розроблені в [76] для вирішення подібної задачі

умови створення та застосування НМЗ для розпізнавання мережевих

кібератак та аналізу голосових сигналів.

Етап 2 – формування портретів вірусів та безпечних програм.

Виконання етапу полягає в аналізі доступних баз даних для

формування множин портретів комп’ютерних вірусів та портретів безпечного

програмного забезпечення. Входом даного етапу є Eнмз та множина

доступних DB.

f (DB , Eнмз)→ ⟨M v ,M p ⟩, (3.61)

де ⟨ M v ,M p ⟩ - кортеж портретів комп’ютерних вірусів та портретів

безпечного програмного забезпечення.

Кортеж ⟨ M v ,M p ⟩ являється виходом даного етапу.

Етап 3 – визначення архітектурних параметрів ГНМ.

Даний етап співвідноситься із розробленим методом визначення

архітектурних параметрів ГНМ. Входом етапу є кортеж

⟨DNNent , ADNN , R , Η ,α ,V , Δd ,M v ,M p , τavl ,Qavl , εalw ⟩ . В узагальненому вигляді

перетворення інформації на даному етапі визначається виразами (3.17-3.19).

Етап розділено на 5 кроків, що відповідають 1-5 етапам методу визначення

94

архітектурних параметрів ГНМ.

Крок 1. Окреслення умов застосування ГНМ. Розрахунки даного кроку

визначаються виразами (3.20-3.24). Входом кроку є множини V, Mp, τavl, Qavl,

avl. Виходом є кортеж ⟨ L ,ϑ w , ϑ n ⟩ .

Крок 2. Встановлення доцільності застосування типу ГНМ. Вхідними

даними кроку є множина доступних видів ГНМ (DNNent),
τavl , ϑw , λ ,

ϑn , Lmin , N x , N y . Після застосування до вхідної інформації виразів

(3.25-3.27) виходом кроку є DNNavl .

Крок 3. Розрахунок виду ефективної архітектури. Розрахунки

проводяться за допомогою виразів (3.28-3.32). На вхід кроку подаються

DNNavl , R, α та Δd . Виходом кроку є DNN eff .

Крок 4. Формування параметрів навчальних прикладів. На вхід етапу

подаються M v , M p , Kv , L , X , Y , N x , N y , DNN eff .

Виходом являється
S= {Sw , Sn } . При розрахунках використано вирази

(3.33-3.43).

Крок 5. Розрахунок архітектурних параметрів ГНМ. Розрахунок

базується на виразах (3.44-3.50). На вхід кроку подаються DNN eff , ADNN ,

N x , N y та L . Виходом кроку є Aeff={Nh , ak , bk , dk , L f , min , L f ,max ,K ls } .

Етап 4 – верифікації НМЗ.

Верифікація НМЗ проводиться з позицій допустимості похибки

розпізнавання. Вхідними даними етапу являються ⟨DNNeff , Aeff ⟩ , апз, чп.

Виходом етапу Η eff – множина параметрів верифікованих НМЗ.

Передбачено проводити експериментальну верифікацію розроблених НМЗ,

процес якої у формалізованому вигляді можливо записати так:

f (⟨DNN eff , A eff ⟩ ,Θапз ,Θчп)=H eff . (3.62)

Етап 5 – оцінка ефективності НМЗ.

95

Оцінка реалізується з позицій забезпечення в побудованому НМЗ

процедур, що забезпечують ефективне розпізнавання комп’ютерних вірусів в

очікуваних умовах застосування. На вхід подається Η eff , G, U, De .

Виходом етапу є Seff – сигнал, що свідчить про достатню чи недостатню

ефективність побудованого НМЗ. Розрахунки етапу можливо представити

за допомогою виразів виду (2.6, 2.7, 3.59).

В даному розділі наведено опис вирішення задачі розробки

нейромережевої моделі та методів розпізнавання комп’ютерних вірусів.

Основні результати розділу наступні:

- Модель формування параметрів навчальних прикладів глибокої

нейронної мережі призначена для використання в засобах антивірусного

захисту в які передбачено можливість використання в якості вхідних

параметрів закодованих значень викликів API-функцій, байт-послідовності

N-грамів, опкодів, вилучених з дизасебльованих файлів, результатів

статистичного аналізу зразків шкідливих та безпечних програм, значень

регістрів EAX, EBX, EDX, EDI, ESI, EBP, RAX, RBX, RDX, RDI, RSI, RBP,

параметрів графів викликів API-функції, бінарного двохвимірного

представлення програмного коду, параметрів PE-заголовку файлу та

параметрів графу залежностей значень та станів програмного забезпечення.

На відміну від відомих застосування в моделі графу залежностей значень та

станів забезпечує можливість нейромережевого розпізнавання

обфускованого програмного коду, характерного для сучасних поліморфних

вірусів.

 - Метод визначення архітектурних параметрів глибокої нейронної

мережі забезпечує можливість зменшення обсягу експериментальних

досліджень, пов’язаних з визначенням архітектурних параметрів глибокої

нейронної мережі, призначеної для використання в нейромережевих засобах

розпізнавання комп’ютерних вірусів. Це забезпечило можливість

підвищення ефективності нейромережевих методів розпізнавання

комп'ютерних вірусів.

- Метод нейромережевого розпізнавання комп’ютерних вірусів, який на

відміну від існуючих, за рахунок використання запропонованих елементів

96

методологічної бази та запропонованого методу проектування архітектури

глибокої нейронної мережі, забезпечує достатню похибку розпізнавання при

різних умовах застосування з врахуванням обмежень щодо створення

навчальної вибірки та обмежень щодо обчислювальних ресурсів системи

антивірусного захисту

97

РОЗДІЛ 4. НЕЙРОМЕРЕЖЕВА СИСТЕМА РОЗПІЗНАВАННЯ

КОМП'ЮТЕРНИХ ВІРУСІВ ТА ЕКСПЕРИМЕНТАЛЬНІ

ДОСЛІДЖЕННЯ

4.1. Архітектура нейромережевої системи

Розробка архітектури НМС проведена з позицій технічної реалізації

запропонованого методу розпізнавання комп’ютерних вірусів за умов,

наближених до застосування у вітчизняних засобах антивірусного захисту.

Також при розробці структури НМС враховані рішення [53].

Відповідно рекомендацій [100] перший етап розробки було орієнтовано

на побудову UML-діаграм системи розпізнавання. Використання мови UML

пояснюється її апробованістю в задачах розробки програмного забезпечення

для інформаційних систем різноманітного призначення та можливістю

одночасного документування системної архітектури. Розроблено чотири

основні UML-діаграми:

- прецендентів (Use case diagram),

- пакетів (Package diagram),

- компонентів (Component diagram),

- класів в (Class diagram).

Для розробки використано вільнодоступний об'єктно-орієнтований

CASE-засіб проектування Rational Rose виробництва компанії IBM.

Розробку UML-діаграм розпочато з, показаної на рис. 4.1 діаграми

прецендентів НМС розпізнавання, що використовується для моделювання

функціональних вимог до системи. Зазначимо, що функціональні вимоги

представлено у вигляді сценаріїв взаємодії користувачів з системою.

При побудові діаграми прецендентів враховано, що на першому рівні

деталізації НМС можна вважати, що до її складу входить 4 актори:

«Детектор», «Нейромережевий аналізатор», «Сигналізатор» та

«Адміністратор». При цьому актори «Детектор», «Нейромережевий

аналізатор» та «Сигналізатор» представляють собою технічні засоби

необхідні для отримання програмного коду, його нейромережевого аналізу та

98

сигналізації про результати розпізнавання. Актор «Адміністратор» є діючою

особою, що взаємодіє з системою.

Рис. 4.1. Діаграма прецендентів

Характеристики, показаних на рис. 4.1, прецендентів використання

наведено в табл. 4.1.

99

Таблиця 4.1

Характеристика прецендентів використання

Назва преценденту Мета преценденту

Налаштувати

реєстрацію

Визначити номенклатуру діагностичних параметрів,

що підлягають реєстрації та часові параметри

реєстрації

Реєструвати Реалізувати реєстрацію діагностичних параметрів та

зберегти зареєстровані дані

Деобфускувати Провести деобфускацію програмного коду, тобто

представити програмний код у вигляді параметрів,

що характеризують відповідний граф залежностей та

станів

Реалізувати

первинну обробку

Представити діагностичні параметри у вигляді

придатному для подачі у нейромережевий аналізатор

Визначити

параметри

навчання

Визначити учбову вибірку, параметри навчальних

даних, необхідну точність навчання, максимально

допустимий термін навчання, характеристики

апаратно-програмного забезпечення

Реалізувати

навчання

Розрахувати множину вагових коефіцієнтів глибокої

нейронної мережі

Задати параметри

розпізнавання

Задати множину образів, що підлягають

нейромережевому аналізу, характеристики

програмно-апаратного забезпечення, максимально

допустимий термін розпізнавання

Розпізнати Розрахувати вихідний сигнал нейромережевого

аналізатора

Сигналізувати Інтерпретувати вихідний сигнал нейромережевого

аналізатора у вигляді розпізнаного класу

Діаграма пакетів, що побудована для спрощеного представлення

структури НМС розпізнавання, показана на рис. 4.2.

100

Рис. 4.2. Діаграма пакетів

На вказаній діаграмі відображено пакети та під пакети, з яких

складається система розпізнавання:

 «Детектор» – пакет, що відповідає за реєстрацію та первинну

обробку діагностичних параметрів. До складу цього пакету входять

підпакети «Сенсор» та «Деобфускатор».

 «Аналізатор» – пакет, що відповідає за аналіз перехопленої

інформації. До його складу входять підпакети «Модель» та «Класифікатор»,

що відповідають за побудову НММ та її застосування.

 «Адміністратор» – пакет, що відповідає за взаємодію адміністратора

безпеки із системою розпізнавання. Цей пакет складається із двох підпакетів

«Налаштовувач» та «Сигналізатор».

Перший підпакет призначений для надання оператору системи

можливості налаштовувати параметри розпізнавання. Другий пакет

забезпечує адміністратора безпеки інформацію про функціонування НМС

розпізнавання.

Діаграма компонентів системи розпізнавання комп'ютерних вірусів

показана на рис. 4.3. До складу цієї діаграми входять три модулі «Detector»,

«NeuroNet» та «Admin». Вказані модулі визначають інтерфейс управління

НМС, отримання коду програмного забезпечення та його аналіз за

допомогою ГНМ.

101

Detector

NeuroNet

Admin

Рис. 4.3. Діаграма компонентів

Діаграма класів, що використовується для відображення структур

класів, які складають архітектуру системи розпізнавання, показана на рис.

4.4.

102

Рис. 4.4. Діаграма класів

Розробка UML-діаграм, показаних на рис. 4.1-4.4 забезпечила

можливість реалізації другого етапу проектування архітектури НМС, що

полягав в розробці її структурної схеми на другому етапі деталізації.

Структурно НМС складається із окремих модулів, що об'єднані в 4 окремі

блоки та модуль управління.

Призначення та характеристика окремих блоків НМС розпізнавання

комп'ютерних вірусів наведено в табл. 4.2.

Таблиця 4.2

Характеристика окремих блоків нейромережевої системи розпізнавання

Назва Характеристика блоку

Блок визначення

параметрів (БВП)

Визначення номенклатури та значень параметрів, що

характеризують умови створення та застосування

НМС.

Блок розробки

навчальних

прикладів

(БРНП)

Попередня обробка та нормалізація вхідних та вихідних

параметрів навчальних прикладів, визначення

максимальної та мінімальної кількості навчальних

прикладів для доступних типів ГНМ, формування

навчальної вибірки.

Блок розробки

архітектури ГНМ

(БРА)

Визначення ефективних типів ГНМ, визначення

найбільш ефективного типу ГНМ, розрахунок

параметрів архітектури та навчання ефективних типів

ГНМ.

Блок

розпізнавання

комп'ютерних

вірусів (БРКВ)

Реалізація деобфускації програмного коду, розрахунок

значень вхідних параметрів ГНМ, розпізнавання

комп'ютерних вірусів та сигналізація про результати

розпізнавання.

До складу блоку визначення параметрів входять:

- Модуль визначення діагностичних параметрів (ВДП) призначений

для формування множини діагностичних параметрів, що будуть

використовуватись для розпізнавання заданого типу комп'ютерних вірусів.

103

- Модуль визначення умов створення навчальної вибірки (УСНВ)

призначений для визначення параметрів допустимої навчальної вибірки,

визначення доступних баз даних, що можуть бути використані для

формування навчальної вибірки.

 - Модуль опису апаратних засобів (АПЗ) призначений для визначення

параметрів апаратних засобів, що використовуються для розробки та

застосування НМЗ.

 - Модуль визначення часових параметрів (ВЧП) котрий призначений

для розрахунку допустимих термінів щодо створення навчальної вибірки,

навчання та побудови НММ.

До складу блоку розробки навчальних прикладів входять:

- Модуль оцінки обсягу навчальної вибірки (ОНВ) призначений для

розрахунку обсягу навчальної вибірки необхідного для ефективного

навчання доступних видів ГНМ.

- Модуль обробки навчальних прикладів (ОНП) застосовується для

попередньої обробки параметрів навчальних прикладів для доступних видів

ГНМ.

- Модуль формування навчальної вибірки (ФНВ) призначений для

формування навчальної вибірки для кожного із допустимих типів ГНМ.

- Модуль перевірки навчальних даних (ПНД) призначений для

перевірки якості обробки навчальних прикладів.

До складу блоку розробки архітектури ГНМ входять:

- Модуль формування множини допустимих типів ГНМ (МДТ) в

котрому на основі аналізу множини доступних типів ГНМ реалізується

визначення множини допустимих типів.

- Модуль формування множини ефективних типів ГНМ (МЕТ) в

котрому на основі аналізу множини допустимих типів ГНМ проводиться

визначення множини ефективних типів.

- Модуль визначення найбільш ефективного типу ГНМ (НЕТ) в

котрому на основі аналізу множини ефективних типів ГНМ розраховується

найбільш ефективний тип.

- Модуль визначення параметрів архітектури (ПА) призначений для

104

визначення параметрів архітектури найбільш ефективного типу ГНМ.

- Модуль реалізації навчання (РН) призначений для навчання ГНМ з

визначеною архітектурою.

До складу блоку розпізнавання комп'ютерних вірусів входять:

- Модуль отримання діагностичної інформації параметрів (ОДІ)

призначений для реєстрації та первинної обробки діагностичних параметрів.

- Модуль деобфускації програмного коду (ДПК) призначений для

відображення процесу функціонування програмного забезпечення у вигляді

графу залежностей і станів та перетворення параметрів цього графу до

вигляду сприйнятого для подачі в ГНМ.

- Модуль визначення вхідних параметрів (ВП) призначений для

розрахунку значень вхідних параметрів ГНМ.

- Модуль реалізації розпізнавання (РР) призначений для реалізації

розпізнавання комп'ютерних вірусів за допомогою ГНМ.

- Модуль сигналізації (СР) призначений для сигналізації про результати

розпізнавання ПЗ.

Крім того, до складу розробленої НМС входить модуль управління

системою (МУС). Таким чином в цілому НМС розпізнавання комп'ютерних

вірусів складається із 19 окремих модулів.

Передбачено, що розроблена НМС може функціонувати в таких

режимах:

- Окреслення умов експлуатації (РОУЕ).

- Визначення налаштувань (РВН).

- Розпізнавання комп’ютерних вірусів (РКВ).

- Зупинки (РЗ).

Переключення режимів функціонування реалізується за допомогою

модулю управління системою (МУС).

Структура запропонованої НМС розпізнавання комп'ютерних вірусів

показана на рис. 4.5.

Передбачається, що першочерговим режимом функціонування,

запропонованої НМС розпізнавання комп'ютерних вірусів, являється режим

окреслення умов експлуатації. Основним завданням режиму окреслення умов

105

експлуатації є визначення параметрів, що характеризують очікувані умови

застосування. В даному режимі спрацьовують модулі, що входять до складу

БПВ.

Рис. 4.6. Структура нейромережевої системи розпізнавання комп’ютерних вірусів

При цьому на вхід даного блоку входять: параметри вимог до НМС

розпізнавання(V), характеристики доступного програмно-апаратного

забезпечення системи (C), ресурси (R), що виділяються на розробку системи

та заданий термін її створення (T). Також на вхід БВП поступає множина

експертних даних (E), що використовується для обробки V, R та C.

Результат спрацювання модулів даного блоку:

– ВДП – множина діагностичних параметрів ГНМ, що

використовуються для розпізнавання заданих типів комп'ютерних вірусів

106

(Фk). Для формування даної множини доцільно використовувати методи

експертного оцінювання визначені в роботах [71, 91].

Попередня обробка діагностичних параметрів реалізується за

допомогою виразів (3.3-3.5).

– УСНВ – кортеж параметрів, що характеризує умови створення

навчальної вибірки ГНМ (Uds), компоненти якого визначаються при реалізації

третього кроку першого етапу методу визначення архітектурних параметрів

глибокої нейронної мережі.

– АПЗ – кортеж параметрів, що описують характеристики доступного

апаратно-програмного забезпечення НСМ (Uh). Вказані параметри

визначаються за допомогою методів експертного оцінювання на основі даних

табл. 2.1.

– ВЧП – кортеж параметрів, що визначають допустимі часові

показники побудови та створення НМС розпізнавання комп'ютерних вірусів

(Ut). Компоненти кортежу визначаються виразами (2.26, 2.28, 2.29).

Якщо параметри, котрі характеризують умови розробки та

використання НМС розпізнавання, не відповідають заданим обмеженням, то

функціонування системи зупиняється. Якщо ж умови розробки та

використання НМС розпізнавання відповідають заданим обмеженням, то

система переводиться в режим визначення налаштувань. В цьому випадку

спрацьовує БРНП та БРА.

Результат спрацювання модулів БРНП:

- ОНВ - множина значень мінімально допустимої кількості навчальних

прикладів для кожного із допустимих видів ГНМ (Kds). Для розрахунку

вказаних значень використовуються вирази (2.20-2.22, 2.44-2.46, 2.48-2.49).

- ОНП - множина навчальних прикладів з попередньо обробленими

параметрами (Cs). Для попередньої обробки параметрів навчальних

прикладів використовуються вирази (3.33-3.41).

- ФНВ - кортеж, що містить множини навчальних даних для кожного із

допустимих типів ГНМ (<Cs>). Для формування вказаних множин

використовуються вирази (3.41-3.43).

- ПНД – сигнал про якість обробки навчальних прикладів (Sq).

107

Для перевірки якості обробки, що реалізується в ПНД, відповідно до

результатів [6], використовується константа Ліпшіца, що розраховується за

допомогою виразу виду:

{K lp=max(|
y i− y j|

‖xi−x j‖)
i≠ j ,

, (4.1)

де K lp - константа Ліпшіца, x i , x j – вектори вхідних параметрів для i-

го та j-го навчального прикладу, yi , y j – вихідні параметри для i-го та j-го

навчального прикладу.

Якість попередньої обробки вважається достатньою, якщо

справджується вираз (4.2).

if K lp ≤DLp. (4.2)

В першому наближенні вважається, що DLp=50.

Якщо вираз (4.2) не справджується, то слід, відповідно [41, 100],

змінити методику нормалізації, структуру та обсяг навчальної вибірки.

Результат спрацювання модулів БРА:

- МДТ - множина допустимих типів ГНМ (DNNavl). Множина

допустимих типів ГНМ формується за допомогою виразів (2.85-2.88, 2.89-

2.92, 3.27).

- МЕТ - множина ефективних типів ГНМ (DNNeff). Множина

ефективних типів ГНМ формується за допомогою виразів (3.30, 3.31).

- НЕТ – назва/назви найбільш ефективних типів ГНМ (DNNmax). Для

визначення використовуються вираз (3.32).

- ПА – множина архітектурних параметрів найбільш ефективного типу

ГНМ (Aeff). Елементи множини розраховуються за допомогою виразів (3.44-

3.50). Якщо в результаті спрацювання модулю НЕТ визначено, що

K dnnmax
>1, (4.3)

де K dnnmax – кількість елементів множини DNNmax.

Тобто визначено, що є декілька типів ГНМ з однаковим максимальним

значенням функції ефективності, то

Aeff={A1, A2 ,… AK dnn
max
} (4.4)

108

- РН – множина вагових коефіцієнтів синаптичних зв'язків для

найбільш ефективного типу ГНМ після реалізації навчання (Weff). Якщо

умова (4.3) справджується, то

W eff={W 1 ,W 2 ,…WK dnn
max
} (4.5)

Навчання реалізується за допомогою відповідного програмно-

апаратного забезпечення.

Після спрацювання БРНП та БРА НМС за допомогою МУС

переводиться в режим розпізнавання комп'ютерних вірусів. В цьому випадку

спрацьовують модулі, що входять до складу БРКВ.

Результат спрацювання модулів БРКВ:

- ОДІ – множина первинно оброблених діагностичних параметрів

програмного забезпечення, що підлягає розпізнаванню (Фu). Обробка

діагностичних параметрів реалізується за допомогою виразів (3.3-3.5). На

вхід модулю подається множина зареєстрованих діагностичних параметрів

(Фr).

- ДПК - множина параметрів, що відображають функціонування

програмного забезпечення у вигляді графу залежностей та станів (Фdvs). Для

формування множини використовуються вирази (3.1-3.16).

- ВП - множина вхідних параметрів ГНМ, котрі характеризують

програмне забезпечення тип якого має бути розпізнано (X). Для формування

множини використовуються вирази (3.33-3.41).

- РР - розпізнаний тип програмного забезпечення (Ri).

Якщо в результаті спрацювання модулю НЕТ, котрий входить до блоку

БРА визначено хибність умови (4.3), то результат розпізнавання i-го типу ПЗ,

що підлягає розпізнаванню, формується у вигляді виразу виду:

Ri= (i , Y), (4.6)

де Y – вектор вихідних величин для найбільш ефективного типу ГНМ, i

– номер типу ПЗ, що підлягає розпізнаванню.

Якщо в результаті спрацювання модулю НЕТ, котрий входить до блоку

БРА визначено справедливість умови (4.3), то результат розпізнавання

формується у вигляді виразу виду:

Ri=(i , Y 1 ,Y 2 ,…Y Kdnn
max
), (4.7)

109

де Y n – вектор вихідних величин для n-го типу ГНМ, що входить до

множини DNNeff.

- СР - сигнал про результати розпізнавання наперед визначених типів

ПЗ (SR).

Слід зазначити, що саме сигнал про результати розпізнавання

комп'ютерних вірусів і є вихідним сигналом розробленої НМС.

Передбачається, що даний сигнал повинен подаватись на вхід системи

антивірусного захисту для протоколювання подій та визначення та реалізації

захисних заходів.

4.2. Експериментальна установка

Для забезпечення можливості проведення досліджень спрямованих на

верифікацію запропонованих моделей і методів, що призначені для

розпізнавання комп’ютерних вірусів розроблено експериментальну

установку, яка є частковою реалізацією описаної в п. 4.1 НМС.

Основною частиною установки став створений за допомогою мови

Python кросплатформуний програмний додаток «DNN analyzer», що дозволяє

реалізувати ГНМ. В процесі розробки комплексу використана

загальнодоступна бібліотека TensorFlow (розробка компанії Google)

призначена для моделювання ГНМ.

Головне вікно додатку показане на рис. 4.7.

Управляючі елементи головного вікна розділені на три секції Database,

DNN та Classification в котрих розміщені відповідні управляючі елементи

(кнопки). Означені елементи інтерфейсу мають наступне призначення:

- Секція Database – вибір навчальної бази даних.

- Кнопка «Labeled Database» – ініціює режим вибору навчальної

бази даних, що містить марковані приклади.

- Кнопка «Unmarked Database» – ініціює режим вибору навчальної

бази даних, що містить не марковані приклади.

- Секція DNN – співвідноситься з реалізацією ГНМ.

- Кнопка «The choice of the type of DNN» - дозволяє обрати тип

ГНМ.

110

- Кнопка «Set DNN parameters» - ініціює вибір архітектурних

параметрів ГНМ.

- Кнопка «DNN training» - ініціює вибір параметрів навчання та

запускає процес навчання ГНМ.

- Секція Classification - співвідноситься з застосуванням ГНМ для

розпізнавання комп'ютерних вірусів.

- Кнопка «Specify recognition target» - ініціює режим вибору

об’єктів, що підлягають розпізнаванню.

- Кнопка «Recognize» - запускає процес розпізнавання.

Рис. 4.7 Головне вікно додатку «DNN analyzer»

Використання програмного додатку «DNN analyzer» зводиться до

послідовного застосування описаних елементів управління для вибору

111

навчальної бази даних, вибору типу та задання архітектурних параметрів

ГНМ, задання параметрів та реалізації навчання, вибору об'єкту, що має

бути розпізнаний та власне реалізації процесу розпізнавання.

Особливості реалізації програмного додатку «DNN analyzer» полягали в

застосуванні процедури онлайн навчання ГНМ та процедури формування

вхідного шару ГНМ. Спрощена схема алгоритму процедури онлайн навчання

показана на рис. 4.8.

112

Рис. 4.8. Структура алгоритму навчання ГНМ

Спрощення полягає у відсутності на даній схемі елементів, що

відповідають за часові обмеження процесу тренування та за особливості

розділення навчальної вибірки на окремі блоки. Схема алгоритму процедури

формування вхідного шару ГНМ показана на рис. 4.9.

113

Рис. 4.9. Структура алгоритму формування вхідного шару ГНМ

Особливістю цієї процедури є використання БД наперед визначеної

множини діагностичних параметрів та співвіднесення вхідних нейронів ГНМ

з елементами вказаної БД. Це дозволяє уникнути можливих помилок при

114

формуванні вхідного шару ГНМ. Структура алгоритму функціонування

програмного додатку «DNN analyzer» показано на рис. 4.10.

Рис. 4.10. Структура алгоритму функціонування програмного

додатку «DNN analyzer»

В базовому випадку передбачено, що апаратне забезпечення

експериментальної установки повинно базуватись на персональному

комп’ютері (AMD FX-9800P (2.7 - 3.6 ГГц) / RAM 8 ГБ / HDD 1 ТБ / AMD

Radeon RX 540, 2 ГБ), котрий функціонує під управлінням операційної

115

системи Windows 10.

В подальшому можливо використовувати сервіси, що надають послуги

в області хмарних обчислень.

4.3. Експериментальні дослідження

Розробка експериментальної установки дозволила перейти до

досліджень, що пов’язані з доведенням ефективності розробленого методу

визначення архітектурних параметрів ГНМ за умов:

- ГНМ використовується для розпізнавання Windows-орієнтованих

комп’ютерних вірусів на основі аналізу використаних програмою потенційно

небезпечних API-функцій операційної системи.

- На вхід ГНМ подається інформація, отримана в результаті сканування

піддослідних файлів.

- Допустимий термін створення ГНМ складає 1 місяць. Тобто

τavl=2,6×106 c . (4.8)

- Для навчання та тестування ГНМ використовується опублікована

компанією Microsoft БД комп’ютерних вірусів BIG-2015, опублікована за

посиланням https://www.kaggle.com.

Вказана БД дозволена для вільного використання в науково-практичних

цілях для вирішення задач підвищення ефективності засобів антивірусного

захисту комп'ютерних систем.

В БД BIG-2015 представлено приклади сигнатур 9 комп’ютерних

вірусів. Для формування вказаних сигнатур використано програмний

комплекс Interactive DisAssembler, що дозволяє вилучити із бінарного файлу

метадані, які стосуються інструкцій мови Assembler, вмісту регістрів та

даних і функцій, імпортованих із DLL.

Характеристики БД BIG-2015 частково наведено в табл. 4.3.

Таблиця 4.3

Характеристика BIG-2015

Назва вірусу Кількість прикладів

Ramnit 1541

116

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos_ver1 398

Obfuscator.ACY 1228

Gatak 1013

При цьому застосування до дизасембльованого коду технології Flirt

дозволяє визначити наявність в ньому потенційно небезпечних функцій

управління розділами, управління файлами, роботи з реєстром, використання

системної інформації, використання мережевих з’єднань, управління

пам’яттю, використання сервісів, управління системою захисту об’єктів. В

першому наближенні прийнято, що кількість таких функцій дорівнює 300.

Таким чином, кількість вхідних параметрів ГНМ, а кількість вихідних

параметрів. Тобто

N x=300 , N y=10 . (4.9)

Оскільки для формування навчальної вибірки передбачається

використання БД, то можливо вважати, що термін створення одного

маркованого та немаркованого навчального прикладу дорівнює 0. Тобто:

 ϑ w=0 , ϑn=0 . (4.10)

Також визначено, що приведена тривалість однієї навчальної ітерації

ГНМ становить

λ=10−7 с . . (4.11)

Підставивши дані (4.8-4.11) в вирази (2.85-2.88, 3.26), розраховано

термін створення кожного із доступних типів ГНМ: t dnn1 , db=346с, t dnn1 , db=2160 с,

t dnn1 , db=105 с , t dnn1 , db=2,01×105 с. Оскільки для всіх типів ГНМ цей термін

менший від допустимого, тобто справджуються умови, визначені виразами

(2.89-2.92, 3.27), то доцільність використання ГНМ можна вважати

доведеною.

117

Наступний етап розробки ГНМ було присвячено визначенню найбільш

ефективного типу ГНМ. Для цього на за допомогою експертного методу

парного порівняння було для кожного допустимого типу ГНМ визначено

значення кожного із критеріїв ефективності, наведених в табл. 2.2. Також

було проведене визначення значущості кожного із вказаних критеріїв.

 Отримані результати представлені в табл. 4.4 та в табл. 4.5. При

розрахунках враховано, що критерії ефективності мають безрозмірний

характер. Для і-го типу ГНМ значення k-го критерію дорівнює 1, якщо k-та

вимога в основному забезпечується в цьому типі ГНМ, дорівнює 0,5, якщо

забезпечується частково і дорівнює 0, якщо не забезпечується.

Таблиця 4.4

Вагові коефіцієнти критеріїв ефективності ГНМ

1 2 3 4 5 6 7

0,01 0,1 0,07 0,01 0,01 0,11 0,11

8 9 10 11 12 13 14

0,1 0,1 0,07 0,09 0,07 0,1 0,05

Підставивши дані табл. 4.4 та табл. 4.5 в вираз (3.30) розраховано, що

значення функції ефективності для допустимих тидів ГНМ, дорівнюють

Ednn1=0.89, Ednn2=0.81, Ednn1=0.61, Ednn1=0.43. З використанням виразу (3.32)

визначено, що найбільш ефективним типом ГНМ є тип dnn1, до складу якого

входять повнозв’язні ГНМ в яких процедура переднавчання не передбачена.

Визначення типу ГНМ дозволило перейти до структурних параметрів.

Кількість схованих нейронних шарів обрано з позицій максимального

спрощення структури ГНМ і дорівнює Kh=2 .

Для розрахунку кількості нейронів у кожному із схованих шарів

використано вираз (3.44), компонентами якого є кількість вхідних нейронів,

навчальних прикладів, вихідних нейронів та кількість схованих шарів

нейронів.

Таблиця 4.5

118

Значення критеріїв ефективності для допустимих типів ГНМ

Критерій
Тип ГНМ

dnn1 dnn2 dnn3 dnn4

H1 0 0 0 1

H2 0,5 1 0,5 0,5

H3 1 1 1 0,5

H4 0 1 0 0

H5 0 0 1 1

H6 1 0,5 0 0

H7 1 1 0 0

H8 1 1 1 0,5

H9 1 1 1 0,5

H10 1 0,5 0,5 0,5

H11 1 1 0,5 0,5

H12 0,5 0,5 1 1

H13 1 0,5 1 0,5

H14 1 1 0,5 0,5

Відзначимо, що в БД кількість навчальних прикладів, що відповідають

вірусам дорівнює 10868. В навчальній вибірці бажано, щоб кількість

навчальних прикладів для комп’ютерних вірусів та безпечних програм була

однаковою. При цьому формування навчальних прикладів, що стосуються

безпечних програм не складає труднощів. Тому прийнято, що загальна

кількість навчальних прикладів L=210868=21736.

Підставивши в (3.44) Nx=300, Ny=10, Kh=2, L=221736 розраховано, що

кількість нейронів у кожному із схованих шарів дорівнює Nh=128.

Відповідно результатів [25] прийнято, що в схованих шарах нейронів

використовується функція активації типу ReLU, а у вихідному шарі функція

активації типу Softmax. Навчання розробленої ГНМ проводилось на протязі

200 епох. Графіки залежностей показників точності та втрат на тренувальних

та тестових даних від кількості епох навчання показані на рис. 4.11 та рис.

4.12.

119

Рис. 4.11 Графіки залежності показника точності розпізнавання від кількості епох.

Рис. 4.12 Графіки залежності показника втрат при розпізнаванні від кількості епох

Зазначимо, що вказані показники точності та втрат розраховувались за

допомогою виразів (1.2.7, 1.2.8).

Після навчання на вхід ГНМ із БД BIG-2015 були подані приклади, що

не використовувались при навчанні. Похибка розпізнавання для різних типів

120

вірусів показана на рис. 4.13.

Аналіз рис. 4.13 вказує на те, що найбільша похибка розпізнавання

характерна для вірусів Simda, Tracur та Vundo. Це можна пояснити

невеликою кількістю навчальних прикладів, що відповідають цим вірусам.

При цьому середня похибка розпізнавання всіх видів вірусів дорівнює 0,036,

що відповідає похибці сучасних антивірусних засобів.

Також слід зазначити, що за рахунок використання запропонованого

методу проектування архітектури ГНМ вдалось уникнути довготривалих

чисельних експериментів, спрямованих на визначення доцільності її

використання і на визначення її структурних параметрів, та приблизно в 1,5

рази зменшити обчислювальні витрати, пов’язані з визначенням вказаних

архітектурних параметрів.

0

0,02

0,04

0,06

0,08

0,1

П
ох

и
бк

а
р

оз
п

із
н

ав
ан

н
я

Рис. 4.13. Похибка розпізнавання

На заключному етапі досліджень проведено розрахунки, спрямовані на

оцінювання ефективності запропонованого методу нейромережевого

розпізнавання комп’ютерних вірусів. Для цього використаний

загальновизнаний метод розрахунку ефективності НМЗ оцінювання

параметрів безпеки інформаційних систем та визначені критерії

ефективності, що характеризують особливості сучасних НМЗ розпізнавання

комп’ютерних вірусів. Математичне забезпечення цього методу становлять

121

вирази (1.4.1, 1.4.2). Основні результати застосування вказаного методу

представлені в табл. 4.6. У процесі досліджень прийняті величини

коефіцієнтів значущості параметрів ефективності α={0,1; 0,1; 0,1; 0,1; 0,1;

0,2; 0,1; 0,1; 0,1}. Відзначимо, що збільшення коефіцієнта значущості для R6

пояснюється тим, що виконання відповідної процедури визначає принципову

можливість навчання НМЗ за допомгою експертних знань. Результати

проведених розрахунків вказують на те, що ефективність розробленого НМЗ

приблизно в 1,14 рази вища ніж у подібних відомих засобів.

Таблиця 4.5

Оцінка ефективності нейромережевих засобів розпізнавання

комп'ютерних вірусів

№
Назва

засобу

Параметр

R1 R2 R3 R4 R5 R6 R7 R8 R9 RΣ

1 2 3 4 5 6 7 8 9 10 11 12

1 МПФС 1 1 0 0 0 1 0 0 1 0,4

2 ПКД 1 0 0 0 0 0 0 1 0 0,2

3 ПРМВ 1 1 0 0 0 0 0 0 0 0,2

4 КСВВ 1 1 0 0 0 0 0 0 1 0,3

5 ЕССАЗ 1 1 0 0 0 0 0 0 0 0,2

6 АМФНМ 1 1 0 0 0 0 0 0 1 0,3

7 МВФПК 1 1 0 0 0 0 0 0 0 0,2

8 ПВПВП 1 1 0 0 0 0 0 1 0 0,3

9 МНАНС 1 1 0 0 0 0 0 0 0 0,2

10 ПВДП 1 1 0 0 0 0 0 0 0 0,2

Таблиця 4.5 (продовження)

1 2 3 4 5 6 7 8 9 10 11 12

11 НСРА 1 1 0 1 1 0 0 0 1 0,5

12 МЗЗНМ 1 1 0 1 1 0 0 0 1 0,5

13 СНМА 1 1 0 1 1 0 0 0 1 0,5

14 НММПА 1 1 0 0 1 1 0 0 0 0,5

15 НМОПБ 1 1 0 1 1 1 0 0 1 0,7

16 СНРКВ 1 1 0 0 0 0 0 0 0 2

122

17 НМРКВ 1 1 1 1 0 1 1 1 1 0,8

Таким чином, результати досліджень підтверджують можливість

підвищення ефективності розпізнавання комп’ютерних вірусів за рахунок

застосування розроблених НММ та НМЗ. Також визначено, що основним

напрямком удосконалення створеної НМС розпізнавання комп'ютерних

вірусів є розробка методу для навчання НММ за допомогою експертних

правил.

Даний розділ присвячений опису вирішення науково-практичної задач

розробки нейромережевої системи розпізнавання комп'ютерних вірусів і

проведення експериментальних досліджень, спрямованих на підтвердження

достовірності основних результатів дисертаційної роботи. Основні

результати розділу:

- Архітектура нейромережевої системи розпізнавання комп'ютерних

вірусів, в якій на відміну від відомих передбачено використання модулів

визначення найбільш ефективного типу глибокої нейронної мережі та

деобфускації програмного коду, що забезпечує достатню точність

розпізнавання і адаптацію до умов розробки і застосування.

- Експериментальна установка, яка забезпечує можливість проведення

експериментів, спрямованих на перевірку достовірності основних результатів

дисертаційної роботи.

- При очікуваних умовах застосування розроблена нейромережева

система дозволить забезпечити помилку розпізнавання комп'ютерних вірусів

в межах 0,036, що знаходиться на рівні кращих систем аналогічного

призначення. Використання розробленого методу дозволяє приблизно в 1,14

разів підвищити ефективність нейромережевих засобів розпізнавання

мережних кібератак.

123

Список використаних джерел

1. A. Damodaran, Di Troia F., C.A. Visaggio, T.H. Austin, M. Stamp, «A

comparison of static, dynamic, and hybrid analysis for malware detection», Journal

of Computer Virology and Hacking Techniques, 13(1), 1-12, 2017.

2. A. Sujyothi, S. Acharya, «Dynamic Malware Analysis and Detection in

Virtual Environment», International Journal of Modern Education and Computer

Science, 2017, Vol. 9, No. 3, p. 48. DOI: 10.5815/ijmecs.2017.03.06.

3. A.F. Agarap, F.J.H. Pepito, Towards Building an Intelligent Anti-Malware

System: A Deep Learning Approach using Support Vector Machine (SVM) for

Malware Classification, arXiv preprint arXiv:1801.00318. (2017).

4. A.H. Sung, J. Xu, P. Chavez, S. Mukkamala, «Static Analyzer of Vicious

Executables (SAVE)», In Proceedings of the 20th Annual Computer Security

Applications Conference (ACSAC ’04), IEEE Computer Society, Washington, DC,

USA, 326–334. 2004.. https://doi.org/10.1109/CSAC.2004.37

5. B. Aitchanov, A. Korchenko, I. Tereykovskiy, I. Bapiyev, «Perspectives

for using classical neural network models and methods of counteracting attacks on

network resources of information systems», News of the national academy of

sciences of the republic of Kazakhstan series of geology and technical sciences,

Vol. 5, № 425 (2017), рр. 202 – 212.

6. B. Aitchanov, I. Bapiev, I. Terejkowski, L. Terejkowska, V. Pogorelov,

«Calculation of expected output signal of neural network model for detecting of

cyber-attack on network resources», Information Technologies, Management and

Society, The 15th International Scientific Conference Information Technologies

and Management, pр. 59–62, 2017.

7. B. Akhmetov, V. Lakhno, B. Akhmetov, Z. Alimseitova, «Development of

sectoral intellectualized expert systems and decision making support systems in

cybersecurity», Proceedings of the Computational Methods in Systems and

Software, рр. 162-171.

8. B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, «Deep learning for

classification of malware system call sequences», In Byeong Ho Kang and Quan

Bai, editors, AI 2016: Advances in Artificial Intelligence, pр. 137–149, 2016.

124

9. B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. 2015. A

Generic Ap- proach to Automatic Deobfuscation of Executable Code. In 2015

IEEE Symposium on Security and Privacy, рр. 674–691.

https://doi.org/10.1109/SP.2015.47

10. Chih-Ta Lin, Nai-Jian Wang, Han Xiao, and Claudia Eckert, «Feature

selection and extraction for malware classification», Journal of Information

Science and Engineering, 31:965–992, 2015.

11. D. Bilar, «Opcodes as predictor for malware», International Journal of

Electronic Security and Digital Forensics, 1(2):156–168, 2007.

12. D. Bruschi, L. Martignoni, M. Monga. «Using Code Normalization for

Fighting Self-Mutating Malware». Technical Report. Milan: University, 2016. 14

p.

13. D. Ucci, L. Aniello, R. Baldoni, «Survey on the Usage of Machine

Learning Techniques for Malware Analysis», arXiv preprint arXiv:1710.08189,

2018.

14. DLLMiner: structural mining for malware detection, Narouei M. [et al.],

Security and communication networks, Vol. 8, no.18. pp. 3311-3322, 2015.

15. E. Filiol, «Metamorphism, Formal Grammars and Undecidable Code

Mutation», PWASET (World Academy of Science, Engineering and Technology),

Vol. 20, рр. 1–7, 2007.

16. E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, de Geus

P., «Malicious Software Classification Using VGG16 Deep Neural Network’s

Bottleneck Features», In Information Technology-New Generations, pp. 51-59,

Springer, Cham, 2018.

17. Eureka: A Framework for Enabling Static Malware Analysis, Sharif M.

[et al.] ESORICS 2008: Computer Security - ESORICS 2008 pp 481-500.

18. F.A. Omotayo Dlamini and M. Jonathan, «Blackledge Asiru. Application

of Artificial Intelligence for Detecting Derived Viruses», 16th European

Conference on Cyber Warfare and Security (ECCWS 2017) (Dublin 2017 June 29-

30), University College Dublin, рр. 217-227.

19. F. Shaheen, B. Verma, and M. Asafuddoula, «Impact of Automatic

Feature Extraction in Deep Learning Architecture», In Proceedings of the

125

International Conference on Digital Image Computing Techniques and

Applications, (Queensland, Australia), 2016.

20. G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, «Self-normalizing

neural networks», Advances in neural information processing systems, 2017.

21. G. Sigletos, G. Paliouras, C.D. Spyropoulos, «Combining Information

Extraction Systems Using Voting and Stacked Generalization», Journal of Machine

Learning Research, 6 (2005), рр. 1751-1782.

22. G.E. Dahl, J.W. Stokes, Li Deng, Dong Yu, «Large-scale malware

classification using random projections and neural networks», In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on.

IEEE, pp. 3422–3426.

23. G.E. Hinton, R.R. Salakhutdinov, «Reducing the dimensionality of data

with neural networks», Science, 313 (5786), рр. 504-507, 2006.

24. H.S. Anderson, A. Kharkar, B. Filar, P. Roth, «Evading machine learning

malware detection. Black Hat», 2017.

25. Hu. Zhengbing, I. Tereykovskiy, L. Tereykovska, V.

Pogorelov,«Determination of Structural Parameters of Multilayer Perceptron

Designed to Estimate Parameters of Technical Systems», International Journal of

Intelligent Systems and Applications(IJISA), 2017, Vol.9, No.10, pp. 57-62.

(SCOPUS) DOI: 10.5815/ijisa.2017.10.07, ISSN 2074-9058.

26. I. Dychka, I. Tereikovskyi, L. Tereikovska, V. Pogorelov, S.

Mussiraliyeva, «Deobfuscation of Computer Virus Malware Code with Value State

Dependence Graph», Advances in Computer Science for Engineering and

Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, Vol

754. Springer, Cham, pp.370-379.

27. I. Santos, F. Brezo, X. Ugarte-Pedrero, P.G. Bringas, «Opcode Sequences

as Representation of Executables for Data-mining-based Unknown Malware

Detection», Published in Information Sciences: an International Journal, Vol. 231,

May, 2013, рр. 64-82.

28. I.M. Bapiyev, B.H. Aitchanov, I.A. Tereikovskyi, L.A. Tereikovska, A.A.

Korchenko, «Deep neural networks in cyber attack detection systems»,

International Journal of Civil Engineering and Technology (IJCIET) Volume 8,

126

Issue 11, November 2017, pp. 1086–1092.

29. J. Bai, J. Wang, G. Zou, «A Malware Detection Scheme Based on Mining

Format Information», The Scientific World Journal, 2014.

30. J. Drew, T. Moore, M. Hahsler, «Polymorphic malware detection using

sequence classification methods», In Security and Privacy Workshops (SPW),

2016. IEEE, рр. 81–87.

31. J. Rabek, R. Khazan, S. Lewandowski, R. Cunningham, «Detection of

injected, dynamically generated, and obfuscated malicious code», Proceedings of

the 2003 ACM Workshop on Rapid Malcode, pp. 76–82.

32. J. Saxe, K. Berlin, «Deep neural network based malware detection using

two dimensional binary program features», In Malicious and Unwanted Software

(MALWARE), 2015 10th International Conference on. IEEE, рр. 11–20.

33. J. Saxe, K. Berlin, «Deep neural network based malware detection using

two dimensional binary program features», In Malicious and Unwanted Software

(MALWARE), 2015, 10th International Conference on, pp. 11-20.

34. J.Z. Kolter, M.A. Maloof, «Learning to detect and classify malicious

executables in the wild», The Journal of Machine Learning Research, 7:2721–

2744, 2006.

35. K. Hahn, «Robust Static Analysis of Portable Executable Malware»,

HTWK Leipzig, 2014.

36. L. Nataraj, D. Kirat, B.S. Manjunath, G. Vigna, «Sarvam: Search and

retrieval of malware», In Proceedings of the Annual Computer Security

Conference (ACSAC) Worshop on Next Generation Malware Attacks and Defense

(NGMAD), 2013.

37. L. Personnaz, I. Guyon, G. Dreyfus, «Collective computational

properties of neural networks: New learning mechanisms», Phys. Rev. A., Vol. 34,

no. 5, pp. 4217-4228, 1986.

38. LeCun, Y., Bengio, Y., Hinton, G. «Deep learning», Nature 521, рр. 436–

444, 2015.

39. M. Christodorescu, Somesh Jha, «Static Analysis of Executables to

Detect Malicious Patterns», In Proceedings of the 12th Conference on USENIX

Security Symposium, Volume 12 (SSYM’03), USENIX Association, Berkeley,

127

CA, USA, рр. 12–12, 2003. http://dl.acm.org/citation.cfm?id=1251353.1251365

40. M. Farrokhmanesh, A. Hamzeh, «A novel method for malware detection

using audio signal processing techniques», In Artificial Intelligence and Robotics

(IRANOPEN), 2016 (pp. 85-91).

41. M. Rhode, P. Burnap, K. Jones, «Early-stage malware prediction using

recurrent neural networks», Computers & Security, 77, рр. 578-594, 2018.

42. M. Yousefi-Azar, V. Varadharajan, L. Hamey, U. Tupakula,

«Autoencoder-based feature learning for cyber security applications», In 2017

International Joint Conference on Neural Networks (IJCNN), pp. 3854-3861.

43. M. Zolotukhin, T. Hamalainen, «Detection of zero-day malware based on

the analysis of opcode sequences», 2014, рр. 386–391.

44. M.G. Schultz, E. Eskin, E. Z., S. J. Stolfo, «Data mining methods for

detection of new malicious executables», In Proceedings of the IEEE Symp. on

Security and Privacy, pp. 38-49, 2001.

45. Mahmood Youse-Azar, Vijay Varadharajan, Len Hamey, Uday Tupakula,

«Autoencoder-based feature learning for cyber security applications», In Neural

Networks (IJCNN), 2017 International Joint Conference on. IEEE, рр. 3854–3861.

46. Manjunath. Malware images: Visualization and automatic classification,

Nataraj L. [et al.], In Proceedings of the 8th International Symposium on

Visualization for Cyber Security, ACM, 2018, pp. 41-47.

47. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

Ruslan Salakhutdinov, «Dropout: a simple way to prevent neural networks from

overfitting», The Journal of Machine Learning Research, 15(1):1929– 1958, 2015.

48. Novel feature extraction, selection and fusion for effective malware

family classification, M. Ahmadi, D. Ulyanov, S. Semenov [et al.], Proceedings of

the Sixth ACM Conference on Data and Application Security and Privacy, New

York: ACM, 2016, рр. 183-194.

49. O. Tereykovskiy, V. Pogorelov «Cyberattack recognition with radial basis

function neural network», Projekt interdyscyplinarny projektem XXI wieku, Tom

2, рр. 255-262, 2017.

50. O.E. David, N.S. Netanyahu, «Deepsign: Deep learning for automatic

malware signature generation and classification», International Joint Conference

128

on Neural Networks (IJCNN), рр. 1–8, 2015.

51. P.V. Zbitskiy, «Code mutation techniques by means of formal grammars

and automa- tons», Journal in Computer Virology, Paris: Springer, 2009, Vol. 5,

Num. 2. рр. 88–99.

52. Parametric equation for capturing dynamics of cyber-attack malware

transmission with mitigation on computer network, A Falaye Adeyinka, E. S.

Oluyemi, N. V. Adama [et al.], International Journal of Mathematical Sciences and

Computing (IJMSC), 2017, Vol. 3, No.4, рр. 37-51.

53. R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas,

«Malware classification with recurrent networks», In Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International Conference on, pp. 1916-1920,

2015.

54. Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu,

Anil Thomas, «Malware classification with recurrent networks», In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on.

IEEE, рр. 1916–1920.

55. S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, T. Yagi, «Malware

detection with deep neural network using process behavior», In Computer

Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol.

2, pp. 577-582.

56. T. Chen, C.C. Guestrin, XGBoost: A Scalable Tree Boosting System,

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 785-794, 2016.

57. T. Kim, B. Kang, M. Rho, S. Sezer, E.G. Im, «A Multimodal Deep

Learning Method for Android Malware Detection Using Various Features», IEEE

Transactions on Information Forensics and Security, 14(3), рр. 773-788, 2019.

58. T. Shmelova, Y. Sikirda, N. Rizun, V. Lazorenko, V. Kharchenko,

«Machine Learning and Text Analysis in an Artificial Intelligent System for the

Training of Air Traffic Controllers», 2019, pp. 1–50.

59. V. Pogorelov, M. Karpinski, E. Ivanchenko, «Method of neural networks

utilization for malware recognition», The 10 th International Scientific Conference

«ITSec» March, pp. 58, 2020.

129

60. Virus detection using artificial neural networks, Shah S., H. Jani, S.

Shetty [et al.], International Journal of Computer Applications, 2013, Vol. 84, No.

5, p. 17–23.

61. W. Huang, J.W. Stokes, «MtNet: a multi-task neural network for dynamic

malware classification», In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pp. 399-418, Springer, Cham, 2016.

62. Wenyi Huang, Jack W Stokes, «MtNet: a multi-task neural network for

dynamic malware classification», In Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer, рр. 399–418, 2016.

63. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), рр. 157-

166, 1994.

64. Y. Otsuki, M. Ichino, S. Kimura, M. Hatada, and H. Yoshiura,

«Evaluating payload features for malware infection detection”, J. of Inform.

Process., Vol. 22, no. 2, pp. 376–387, 2014.

65. Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, «Sbmds: an

interpretable string based malware detection system using svm ensemble with

bagging», Journal in Computer Virology, 5 (4):283–293, 2009.

66. Ye. Yanfang, Li Tao, Adjeroh Donald, S Sitharama Iyengar, «A survey on

malware detection using data mining techniques», ACM Computing Surveys

(CSUR), 3 (2017), р. 41.

67. А. Артеменко, В. Головко, «Анализ нейросетевых методов

распознавания компьютерных вирусов», Молодежный инновационный форум

ИНТРИ, 2010, Минск: ГУ «БелИСА», 239 с.

68. А. Корченко, И. Терейковский, Н. Карпинский, С.

Тынымбаев,«Нейросетевые модели, методы и средства оценки параметров

безопасности Интернет-ориентированных информационных систем»,

Монографія, К. :ТОВ «Наш Формат», 2016, 275 с.

69. А.И. Иванов, «Нейросетевая защита конфиденциальных

биометрических образов гражданина и его личных криптографических

ключей», Монография, Пенза: ПНИЭИ, 2014, 57 с.

70. А.Ю. Киселевская, «Глубокие нейронные сети: автоматическое

130

обучение распознаванию вредоносных программам. Генерация и

классификация подписей», Молодой ученый, 2017, №. 47(181), С. 15-18.

71. Б. Айтчанов, И. Бапиев, А. Корченко, В. Погорелов, Л.

Терейковская, «Концептуальная модель обеспечения эффективности

нейросетевого распознавания кибератак», Труды международной научно-

практической конференции «Математические методы и информационные

технологии макроэкономического анализа и экономической политики»,

посвященной празднованию 80-летнего юбилея академика НАН РК

Абдыкаппара Ашимовича Ашимова, 11-12, С. 321–325, 2017.

72. Б. Бенджамин, Б. Ребекка, О. Тони, «Прикладной анализ текстовых

данных на Python. Машинное обучение и создание приложений обработки

естественного языка», СПб.: Питер, 2019, 368 с.

73. Б.С. Ахметов, А.И. Иванов, В.А. Фунтиков, А.В. Безяев, Е.А.

Малыгина, «Технология использования больших нейронных сетей для

преобразования нечетких биометрических данных в код ключа доступа»,

Монография, Алматы: ТОО «Издательство LEM», 2014, 144 с.

74. В. Погорелов, «Проблематика використання нейромережевих систем

розпізнавання кібератак», Науковий журнал «Комп'ютерно-інтегровані

технології: освіта, наука, виробництво», №27, С. 67–74, 2017.

75. В. Погорєлов, «Використання графу залежностей значень і станів у

задачі розпізнавання поліморфних комп’ютерних вірусів», Стан та

удосконалення безпеки інформаційно-телекомунікаційних систем (SITS’

2020), Миколаїв, 2020, C. 34-35.

76. В. М. Міхайленко, Л. О. Терейковська, І. А. Терейковський., Б.Б.

Ахметов, «Нейромережеві моделі та методи розпізнавання фонем в

голосовому сигналі в системі дистанційного навчання, Монографія», К.: ЦП

«Компринтр», 2017, 252 с.

77. В. Погорелов, «Нейромережеві моделі та методи розпізнавання

комп’ютерних вірусів», Дис. Канд. техн. наук: 05.13.21, Нац. авіац. ун-т.,

Київ, 2020, 166 с.

78. В. Погорелов, «Нейромережевий метод розпізнавання комп’ютерних

вірусів», VI Міжнародна науково-практична конференція «Актуальні питання

131

забезпечення кібербезпеки та захисту інформації», 2020, С. 88-93.

79. В.А. Хорошко, А.А. Чекатков, «Методы и средства защиты

информации», Киев: Издательство «Юниор», 2003, 504 с.

80. В.Д. Козюра, В.О. Хорошко, М. Є. Шелест Козюра В.Д., «Аналіз

кібернетичної безпеки інформаційного суспільства», Інформаційна безпека

людини, суспільства, держави, № 1, С. 163-170, 2017.

81. Державний стандарт України, Захист інформації. Технічний захист

інформації. Терміни та визначення. ДСТУ 3396.2-97.82. Е. Путин, А.

Тимофеев, «Классификатор для статического обнаружения компьютерных

вирусов, основанный на машинном обучении», International Journal

«Information Technologies & Knowledge», Vol. 8, № 2, 2014, рр. 103-112.

83. И.М. Бапиев, «Нейросетевые модели и методы противодействия

атакам на сетевые ресурсы информационных систем», Информационные

системы Алматы, диссертация на соискание ученой степени доктора

философии (PhD), 127 с, 2018.

84. І. Dychka, D. Chernyshev, I. Tereikovskyi, L. Tereikovska , V.

Pogorelov, «Malware Detection Using Artificial Neural Networks», Advances in

Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in

Intelligent Systems and Computing, Vol. 938. Springer, Cham, pp.3-12, 2019.

85. І. Tereikovskyi, V. Pogorelov, O. Tereikovskyi, «Determination of

structural parameters of a multilayer cyber threat detection perceptron», Aviation in

the XXI-st Century, 2018, pр. 3.3.1 – 3.3.4.

86. І. Терейковський «Нейромережевий поведінковий аналізатор

антивірусної системи», Захист інформації, № 2, С. 67-70, 2012.

87. І. Терейковський, «Нейронні мережі в засобах захисту комп’ютерної

інформації: монографія», К.: ПоліграфКонсалтинг, 2007, 209 с.

88. І. Терейковський «Вдосконалення алгоритму навчання

багатошарового персептрону, призначеного для розпізнавання мережевих

атак», Правове, нормативне та метрологічне забезпечення системи захисту

інформації в Україні, Випуск 2(24), С. 65-70, 2012.

89. І. Терейковський, «Використання нейронних мереж при

розпізнаванні макровірусів», Правове, нормативне та метрологічне

132

забезпечення системи захисту інформації в Україні, № 2 (13), С. 176-183,

2006.

90. І. Терейковський, «Нейромережева методологія розпізнавання

інтернет-орієнтованого шкідливого програмного забезпечення», Безпека

інформації, Т. 19, № 1,С. 24-28, 2013.

91. І. Терейковський, «Нейромережеві моделі, методи і засоби

оцінювання параметрів безпеки інтернет-орієнтованих інформаційних

систем», Дис. д-ра техн. наук: 05.13.21, Нац. авіац. ун-т., Київ, 2015, 430 с.

92. І. Терейковський, О. Заріцький, Л. Терейковська, В. Погорелов,

«Метод розробки архітектури глибокої нейронної мережі, призначеної для

розпізнавання комп’ютерних вірусів», Захист інформації, Т. 20, № 3, C. 188-

199, 2018.

93. Л. Терейковська, Є. Іванченко, В. Погорелов «Метод адаптації

глибокої нейронної мережі до розпізнавання комп’ютерних вірусів»,

Науковий журнал «Комп’ютерно-інтегровані технології: освіта, наука,

виробництво», Луцьк, Випуск № 35, С. 198-205, 2019.

94. Нормативний документ системи технічного захисту

інформації.Термінологія в галузі захисту інформації в комп’ютерних

системах від несанкціонованого доступу НД ТЗІ 1.1-003-99.

95. О. Корченко, І. Терейковський, А. Білощицький, «Методологія

розроблення нейромережевих засобів інформаційної безпеки Інтернет-

орієнтованих інформаційних систем», К.: ТОВ «Наш Формат», 2016, 249 с.

96. О. Г. Корченко, І. А. Терейковський, С. В. Казмірчук, «Верифікація

нейромережевих методів розпізнавання кібератак», Науково-технічний

збірник «Управління розвитком складних систем» Київського національного

університету будівництва і архітектури, 2014, Випуск 17, С. 168-172.

97. О.Г. Руденко, Є.В. Бодянський, «Штучні нейронні мережі», Навч.

посіб., Харків: ТОВ «Компанія СМІТ», 2006, 404 с.

98. Оценка точности алгоритма распознавания вредоносных программ

на основе поиска аномалий в работе процессов, М. В. Баклановский, А.Р.,

Ханов, К.М. Комаров [и др.], Научно-технический вестник информационных

технологий, механики и оптики, 2016, Т. 16, №. 5, С. 823–830.

133

99. П.В. Збицкий, «Функциональная сигнатура компьютерных

вирусов», Доклады ТУСУРа, № 1 (19), часть 2, июнь 2019, с. 75-76.

100. Р.Ю. Демина, «Особенности программной реализации алгоритмов

методики формирования обучающего множества для бинарных

классификаторов, используемых в антивирусном эвристическом статическом

анализе», Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн.

информ., 2017, номер 2, с. 62–68.

101. С. Николенко, А. Кадурин, Е. Архангельская, «Глубокое обучение»,

СПб.: Питер, 2018, 480 с.

102. С. Рассел, П. Норвиг, «Искусственный интеллект: современный

подход», 4-е изд, пер.с англ. К.А. Птицына, М.: Вильямс, 2017, 1408 с.

103. С. Семенов, С. Гавриленко, С. Глоба, О. Бабенко, «Розробка

системи виявлення комп’ютерних вірусів на основі нейронної мережі АРТ-

1», Системи обробки інформації, 2015, Випуск 10 (135) с. 126-129.

104. У. Микелуччи, «Прикладное глубокое обучение. Подход к

пониманию глубоких нейронных сетей на основе метода кейсов», Пер. с

англ., СПб.: БХВ-Петербург, 2020, 368 с.

105. Шолле Франсуа, «Глубокое обучение на Python», СПб.: Питер,

2018, 400 с.

106. Я. Гудфеллоу, И. Бенджио, А. Курвилль, «Г93 Глубокое обучение»,

пер. с анг. А.А. Слинкина, 2-е изд., испр, М.: ДМК Пресс, 2018, 652 с.

134

	І.А. Терейковський,
	О.Г. Корченко,
	В.В. Погорелов
	ЗМІСТ
	Список умовних скорочень
	ВСТУП
	РОЗДІЛ 1. АНАЛІЗ НЕЙРОМЕРЕЖЕВИХ ЗАСОБІВ РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ
	1.1. Науково-практична задача розпізнавання комп’ютерних вірусів
	Методи розпізнавання комп’ютерних вірусів можуть бути розділені на 2 класи [1-2, 4]:
	1. Методи, засновані на сигнатурах.
	2. Методи, засновані на виявленні аномалій.
	У більшості сучасних антивірусах центральне місце займає сигнатурний підхід. Він дає 100% точність виявлення вже відомих віруси, але не дозволяє розпізнати ті віруси сигнатури яких невідомі. Аномальний підхід навпаки дозволяє виявляти віруси з невідомими сигнатурами, однак його негативною рисою є висока ймовірність хибних спрацювань. Найчастіше аномальні методи базуються на використанні еврістичних правил. Існує чимало таких методів [3], але останнім часом найбільший потенціал представляють методи, які використовують машинне навчання. Аномальні методи виявляють вірус, використовуючи параметри, що характеризують відмінності функціонування програми від специфікації, що характерна для її нормальної поведінки. Переваги та недоліки сигнатурного аналізу:
	1. Дозволяє визначати конкретний вірус з високою точністю і малою часткою помилкових спрацьовувань.
	2. Малоефективний для розпізнавання поліморфних вірусів.
	3. Вимагає регулярного і оперативного оновлення бази сигнатур.
	4. Для реакції на невідомі віруси потрібні експертні правила, створення яких вимагає ручного аналізу вірусів і виділення сигнатур.
	5. Нездатний виявити нові типи вірусів.
	6. Для розпізнавання різних версії одного і того ж вірусу необхідні різні сигнатури.
	7. З урахуванням великого обсягу бази сигнатур величезна, сигнатурний аналіз є достатньо ресурсоємною операцією.
	Переваги та недоліки аномального методу виявлення комп’ютерних вірусів:
	1. Можливість виявлення раніше невідомих вірусів (вірусів нульового дня (zero-day viruses)).
	2. Висока ймовірність помилкових спрацьовувань, тобто таких при яких легітимне програмне забезпечення буде розпізнане, як вірус.
	3. Висока складність навчання.
	4. Для вже навченої системи аналіз виконується порівняно швидко
	І сигнатурні і аномальні методи можуть використовувати три різних підходи для виявлення вірусів:
	1. Статичний підхід. Використовуючи цей підхід, підозріла програма аналізується статично (тобто без запуску самої програми), як звичайний файл.
	2. Динамічний підхід. При цьому підході, підозріла програма аналізується динамічно, тобто під час її виконання в реальному часі.
	3. Гібридний підхід. Об'єднання статичного і динамічного підходів в різних частинах аналізу шкідливої ​​програми.
	Створення класифікатора для виявлення вірусів умовно можна розділити на три стадії:
	1. Формування простору ознак опису файлу (features extraction). Результатом цієї стадії є вектор, що містить прізнаковие характеристики даного об'єкту. У задачі побудови класифікатора статичного виявлення вірусів ознаками можуть виступати наступні об'єкти:
	- Рядки - виконуваний файл розглядається як звичайна рядок або послідовність рядків. Ознаки - числові характеристики рядків (наприклад, частота нулів в підрядку);
	- Структурні елементи файлу, що виконується. Для Windows-орієнтованих систем, це стосується PE-файлів (Portable Executable). Ознаки, витягнуті з структурної інформації можуть бути наступними: сертифікат, date/time stamp, інформація компонувальника, тип CPU, логічна інформація (вирівнювання секцій, розмір, секції коду, налагоджувальні прапори), інформація про імпорт (список тих DLL, які використовує виконуваний файл), інформація про експорт (функції які надає PE-файл іншим програмам), таблиця релокацій (переміщень) директорії ресурсів.
	- N-грами на рівні байт. Сегменти послідовних байт з різних місць всередині виконуваного файлу довжини N. Кожна N-грами розглядається як ознака.
	- N-грами на рівні опкодов. Мається на увазі, що опкод (opcode - operation code) - специфічний для CPU операційний код, який виконує спеціальну машинну команду (наприклад, mov, push, add).
	2. Вибір ознак (feature selection). Протягом цієї фази вектор, створений на першій стаді обчислюється, а надлишкові і нерелевантні ознаки викидаються з розгляду. Реалізація цієї стадії дозволяє збільшити ефективність процесу навчання моделі за рахунок скорочення кількості необхідних операцій і, як наслідок, збільшення швидкості навчання, підвищити узагальнюючі здатності за рахунок скорочення розмірності простору ознак, підвищити якість інтерпретації навчання. Завдання цієї стадії полягає в тому, щоб з вже виявлених ознак вибрати найбільш значимі (інформативні). Існує декілька підходів до виділення інформативності ознак. Найбільш популярними є кореляційні методи [10, 19].
	3. Побудова математичної моделі, класифікатора, який використовує вектор ознак, отриманий на попердній стадії. Для побудови класифікатора можуть використовуватися такі підходи: дерева рішень, випадковий ліс, метод найшвидшого бустінгу, логістична регресія, метод опорних векторів, метод k-найближчих сусідів, метод адаптивного бустингу, наївний Байес, нейронні мережі. Враховуючи останні досягнення в області теорії НМ найбільшу перспективу мають класифікатори на їх основі.
	Практичний досвід та результати [30] вказують на те, що в сучасних умовах однією із найбільш актуальних є задача розпізнавання пліморфних та зашифрованих вірусів при створенні яких використовується технологія обфускації програмного коду. Зазначимо, що обфускація це приведення виконуваного коду або вихідного тексту програми до виду, який зберігає її функціональність, але ускладнює розуміння, аналіз алгоритмів роботи, а також модифікацію при декомпіляції. Легітимною підставою для використання процедури обфускації є те, що ця технологія використовується і для безпечних програм з метою забезпечення дотримання авторських прав.
	Обфускований програмний код мало придатний для аналізу в антивірусних засобах, а тому виникає необхідність реалізації процедури деобфускації. Тобто необхідно перевести обфускований програмний код до вигляду, що придатний для аналізу. Методів деобфускації достатньо багато. Базуються вони на різних підходах і мають різні можливості і різну ступінь ефективності. Одним із найбільш сучасних є підхід на основі аналізу графу виконання програм. До переваг цього підходу слід віднести його універсальність та інтерпретованість результатів виконання.
	1.2. Характеристика сучасних типів нейромережевих моделей
	1.3. Аналіз нейромережевих моделей та методів розпізнавання комп'ютерних вірусів
	1.4. Шляхи вдосконалення нейромережевих засобів розпізнавання комп’ютерних вірусів

	РОЗДІЛ 2. ЕЛЕМЕНТИ МЕТОДОЛОГІЧНОЇ БАЗИ НЕЙРОМЕРЕЖЕВОГО РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ
	2.1. Концептуальна модель забезпечення ефективності нейромережевого розпізнавання комп’ютерних вірусів
	2.2. Принципи використання глибоких нейронних мереж
	2.3. Модель правил визначення ефективних видів глибоких нейронних мереж

	РОЗДІЛ 3. НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ТА МЕТОДИ РОЗПІЗНАВАННЯ КОМП’ЮТЕРНИХ ВІРУСІВ
	3.1. Модель формування параметрів навчальних прикладів глибокої нейронної мережі
	3.2. Метод визначення архітектурних параметрів глибокої нейронної мережі
	3.3. Метод нейромережевого розпізнавання комп’ютерних вірусів

	РОЗДІЛ 4. НЕЙРОМЕРЕЖЕВА СИСТЕМА РОЗПІЗНАВАННЯ КОМП'ЮТЕРНИХ ВІРУСІВ ТА ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ
	4.1. Архітектура нейромережевої системи
	4.2. Експериментальна установка
	4.3. Експериментальні дослідження

	Список використаних джерел
	1. A. Damodaran, Di Troia F., C.A. Visaggio, T.H. Austin, M. Stamp, «A comparison of static, dynamic, and hybrid analysis for malware detection», Journal of Computer Virology and Hacking Techniques, 13(1), 1-12, 2017.
	2. A. Sujyothi, S. Acharya, «Dynamic Malware Analysis and Detection in Virtual Environment», International Journal of Modern Education and Computer Science, 2017, Vol. 9, No. 3, p. 48. DOI: 10.5815/ijmecs.2017.03.06.
	3. A.F. Agarap, F.J.H. Pepito, Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification, arXiv preprint arXiv:1801.00318. (2017).
	4. A.H. Sung, J. Xu, P. Chavez, S. Mukkamala, «Static Analyzer of Vicious Executables (SAVE)», In Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC ’04), IEEE Computer Society, Washington, DC, USA, 326–334. 2004.. https://doi.org/10.1109/CSAC.2004.37
	5. B. Aitchanov, A. Korchenko, I. Tereykovskiy, I. Bapiyev, «Perspectives for using classical neural network models and methods of counteracting attacks on network resources of information systems», News of the national academy of sciences of the republic of Kazakhstan series of geology and technical sciences, Vol. 5, № 425 (2017), рр. 202 – 212.
	6. B. Aitchanov, I. Bapiev, I. Terejkowski, L. Terejkowska, V. Pogorelov, «Calculation of expected output signal of neural network model for detecting of cyber-attack on network resources», Information Technologies, Management and Society, The 15th International Scientific Conference Information Technologies and Management, pр. 59–62, 2017.
	7. B. Akhmetov, V. Lakhno, B. Akhmetov, Z. Alimseitova, «Development of sectoral intellectualized expert systems and decision making support systems in cybersecurity», Proceedings of the Computational Methods in Systems and Software, рр. 162-171.
	8. B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, «Deep learning for classification of malware system call sequences», In Byeong Ho Kang and Quan Bai, editors, AI 2016: Advances in Artificial Intelligence, pр. 137–149, 2016.
	9. B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. 2015. A Generic Ap- proach to Automatic Deobfuscation of Executable Code. In 2015 IEEE Symposium on Security and Privacy, рр. 674–691. https://doi.org/10.1109/SP.2015.47
	10. Chih-Ta Lin, Nai-Jian Wang, Han Xiao, and Claudia Eckert, «Feature selection and extraction for malware classification», Journal of Information Science and Engineering, 31:965–992, 2015.
	11. D. Bilar, «Opcodes as predictor for malware», International Journal of Electronic Security and Digital Forensics, 1(2):156–168, 2007.
	12. D. Bruschi, L. Martignoni, M. Monga. «Using Code Normalization for Fighting Self-Mutating Malware». Technical Report. Milan: University, 2016. 14 p.
	13. D. Ucci, L. Aniello, R. Baldoni, «Survey on the Usage of Machine Learning Techniques for Malware Analysis», arXiv preprint arXiv:1710.08189, 2018.
	14. DLLMiner: structural mining for malware detection, Narouei M. [et al.], Security and communication networks, Vol. 8, no.18. pp. 3311-3322, 2015.
	15. E. Filiol, «Metamorphism, Formal Grammars and Undecidable Code Mutation», PWASET (World Academy of Science, Engineering and Technology), Vol. 20, рр. 1–7, 2007.
	16. E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, de Geus P., «Malicious Software Classification Using VGG16 Deep Neural Network’s Bottleneck Features», In Information Technology-New Generations, pp. 51-59, Springer, Cham, 2018.
	17. Eureka: A Framework for Enabling Static Malware Analysis, Sharif M. [et al.] ESORICS 2008: Computer Security - ESORICS 2008 pp 481-500.
	18. F.A. Omotayo Dlamini and M. Jonathan, «Blackledge Asiru. Application of Artificial Intelligence for Detecting Derived Viruses», 16th European Conference on Cyber Warfare and Security (ECCWS 2017) (Dublin 2017 June 29-30), University College Dublin, рр. 217-227.
	19. F. Shaheen, B. Verma, and M. Asafuddoula, «Impact of Automatic Feature Extraction in Deep Learning Architecture», In Proceedings of the International Conference on Digital Image Computing Techniques and Applications, (Queensland, Australia), 2016.
	20. G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, «Self-normalizing neural networks», Advances in neural information processing systems, 2017.
	21. G. Sigletos, G. Paliouras, C.D. Spyropoulos, «Combining Information Extraction Systems Using Voting and Stacked Generalization», Journal of Machine Learning Research, 6 (2005), рр. 1751-1782.
	22. G.E. Dahl, J.W. Stokes, Li Deng, Dong Yu, «Large-scale malware classification using random projections and neural networks», In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, pp. 3422–3426.
	23. G.E. Hinton, R.R. Salakhutdinov, «Reducing the dimensionality of data with neural networks», Science, 313 (5786), рр. 504-507, 2006.
	24. H.S. Anderson, A. Kharkar, B. Filar, P. Roth, «Evading machine learning malware detection. Black Hat», 2017.
	25. Hu. Zhengbing, I. Tereykovskiy, L. Tereykovska, V. Pogorelov,«Determination of Structural Parameters of Multilayer Perceptron Designed to Estimate Parameters of Technical Systems», International Journal of Intelligent Systems and Applications(IJISA), 2017, Vol.9, No.10, pp. 57-62. (SCOPUS) DOI: 10.5815/ijisa.2017.10.07, ISSN 2074-9058.
	26. I. Dychka, I. Tereikovskyi, L. Tereikovska, V. Pogorelov, S. Mussiraliyeva, «Deobfuscation of Computer Virus Malware Code with Value State Dependence Graph», Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, Vol 754. Springer, Cham, pp.370-379.
	27. I. Santos, F. Brezo, X. Ugarte-Pedrero, P.G. Bringas, «Opcode Sequences as Representation of Executables for Data-mining-based Unknown Malware Detection», Published in Information Sciences: an International Journal, Vol. 231, May, 2013, рр. 64-82.
	28. I.M. Bapiyev, B.H. Aitchanov, I.A. Tereikovskyi, L.A. Tereikovska, A.A. Korchenko, «Deep neural networks in cyber attack detection systems», International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 11, November 2017, pp. 1086–1092.
	29. J. Bai, J. Wang, G. Zou, «A Malware Detection Scheme Based on Mining Format Information», The Scientific World Journal, 2014.
	30. J. Drew, T. Moore, M. Hahsler, «Polymorphic malware detection using sequence classification methods», In Security and Privacy Workshops (SPW), 2016. IEEE, рр. 81–87.
	31. J. Rabek, R. Khazan, S. Lewandowski, R. Cunningham, «Detection of injected, dynamically generated, and obfuscated malicious code», Proceedings of the 2003 ACM Workshop on Rapid Malcode, pp. 76–82.
	32. J. Saxe, K. Berlin, «Deep neural network based malware detection using two dimensional binary program features», In Malicious and Unwanted Software (MALWARE), 2015 10th International Conference on. IEEE, рр. 11–20.
	33. J. Saxe, K. Berlin, «Deep neural network based malware detection using two dimensional binary program features», In Malicious and Unwanted Software (MALWARE), 2015, 10th International Conference on, pp. 11-20.
	34. J.Z. Kolter, M.A. Maloof, «Learning to detect and classify malicious executables in the wild», The Journal of Machine Learning Research, 7:2721–2744, 2006.
	35. K. Hahn, «Robust Static Analysis of Portable Executable Malware», HTWK Leipzig, 2014.
	36. L. Nataraj, D. Kirat, B.S. Manjunath, G. Vigna, «Sarvam: Search and retrieval of malware», In Proceedings of the Annual Computer Security Conference (ACSAC) Worshop on Next Generation Malware Attacks and Defense (NGMAD), 2013.
	37. L. Personnaz, I. Guyon, G. Dreyfus, «Collective computational properties of neural networks: New learning mechanisms», Phys. Rev. A., Vol. 34, no. 5, pp. 4217-4228, 1986.
	38. LeCun, Y., Bengio, Y., Hinton, G. «Deep learning», Nature 521, рр. 436–444, 2015.
	39. M. Christodorescu, Somesh Jha, «Static Analysis of Executables to Detect Malicious Patterns», In Proceedings of the 12th Conference on USENIX Security Symposium, Volume 12 (SSYM’03), USENIX Association, Berkeley, CA, USA, рр. 12–12, 2003. http://dl.acm.org/citation.cfm?id=1251353.1251365
	40. M. Farrokhmanesh, A. Hamzeh, «A novel method for malware detection using audio signal processing techniques», In Artificial Intelligence and Robotics (IRANOPEN), 2016 (pp. 85-91).
	41. M. Rhode, P. Burnap, K. Jones, «Early-stage malware prediction using recurrent neural networks», Computers & Security, 77, рр. 578-594, 2018.
	42. M. Yousefi-Azar, V. Varadharajan, L. Hamey, U. Tupakula, «Autoencoder-based feature learning for cyber security applications», In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3854-3861.
	43. M. Zolotukhin, T. Hamalainen, «Detection of zero-day malware based on the analysis of opcode sequences», 2014, рр. 386–391.
	44. M.G. Schultz, E. Eskin, E. Z., S. J. Stolfo, «Data mining methods for detection of new malicious executables», In Proceedings of the IEEE Symp. on Security and Privacy, pp. 38-49, 2001.
	45. Mahmood Youse-Azar, Vijay Varadharajan, Len Hamey, Uday Tupakula, «Autoencoder-based feature learning for cyber security applications», In Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE, рр. 3854–3861.
	46. Manjunath. Malware images: Visualization and automatic classification, Nataraj L. [et al.], In Proceedings of the 8th International Symposium on Visualization for Cyber Security, ACM, 2018, pp. 41-47.
	47. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, «Dropout: a simple way to prevent neural networks from overfitting», The Journal of Machine Learning Research, 15(1):1929– 1958, 2015.
	48. Novel feature extraction, selection and fusion for effective malware family classification, M. Ahmadi, D. Ulyanov, S. Semenov [et al.], Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New York: ACM, 2016, рр. 183-194.
	49. O. Tereykovskiy, V. Pogorelov «Cyberattack recognition with radial basis function neural network», Projekt interdyscyplinarny projektem XXI wieku, Tom 2, рр. 255-262, 2017.
	50. O.E. David, N.S. Netanyahu, «Deepsign: Deep learning for automatic malware signature generation and classification», International Joint Conference on Neural Networks (IJCNN), рр. 1–8, 2015.
	51. P.V. Zbitskiy, «Code mutation techniques by means of formal grammars and automa- tons», Journal in Computer Virology, Paris: Springer, 2009, Vol. 5, Num. 2. рр. 88–99.
	52. Parametric equation for capturing dynamics of cyber-attack malware transmission with mitigation on computer network, A Falaye Adeyinka, E. S. Oluyemi, N. V. Adama [et al.], International Journal of Mathematical Sciences and Computing (IJMSC), 2017, Vol. 3, No.4, рр. 37-51.
	53. R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas, «Malware classification with recurrent networks», In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp. 1916-1920, 2015.
	54. Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, Anil Thomas, «Malware classification with recurrent networks», In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, рр. 1916–1920.
	55. S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, T. Yagi, «Malware detection with deep neural network using process behavior», In Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 2, pp. 577-582.
	56. T. Chen, C.C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794, 2016.
	57. T. Kim, B. Kang, M. Rho, S. Sezer, E.G. Im, «A Multimodal Deep Learning Method for Android Malware Detection Using Various Features», IEEE Transactions on Information Forensics and Security, 14(3), рр. 773-788, 2019.
	58. T. Shmelova, Y. Sikirda, N. Rizun, V. Lazorenko, V. Kharchenko, «Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers», 2019, pp. 1–50.
	59. V. Pogorelov, M. Karpinski, E. Ivanchenko, «Method of neural networks utilization for malware recognition», The 10 th International Scientific Conference «ITSec» March, pp. 58, 2020.
	60. Virus detection using artificial neural networks, Shah S., H. Jani, S. Shetty [et al.], International Journal of Computer Applications, 2013, Vol. 84, No. 5, p. 17–23.
	61. W. Huang, J.W. Stokes, «MtNet: a multi-task neural network for dynamic malware classification», In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 399-418, Springer, Cham, 2016.
	62. Wenyi Huang, Jack W Stokes, «MtNet: a multi-task neural network for dynamic malware classification», In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, рр. 399–418, 2016.
	63. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), рр. 157-166, 1994.
	64. Y. Otsuki, M. Ichino, S. Kimura, M. Hatada, and H. Yoshiura, «Evaluating payload features for malware infection detection”, J. of Inform. Process., Vol. 22, no. 2, pp. 376–387, 2014.
	65. Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, «Sbmds: an interpretable string based malware detection system using svm ensemble with bagging», Journal in Computer Virology, 5 (4):283–293, 2009.
	66. Ye. Yanfang, Li Tao, Adjeroh Donald, S Sitharama Iyengar, «A survey on malware detection using data mining techniques», ACM Computing Surveys (CSUR), 3 (2017), р. 41.
	67. А. Артеменко, В. Головко, «Анализ нейросетевых методов распознавания компьютерных вирусов», Молодежный инновационный форум ИНТРИ, 2010, Минск: ГУ «БелИСА», 239 с.
	68. А. Корченко, И. Терейковский, Н. Карпинский, С. Тынымбаев,«Нейросетевые модели, методы и средства оценки параметров безопасности Интернет-ориентированных информационных систем», Монографія, К. :ТОВ «Наш Формат», 2016, 275 с.
	69. А.И. Иванов, «Нейросетевая защита конфиденциальных биометрических образов гражданина и его личных криптографических ключей», Монография, Пенза: ПНИЭИ, 2014, 57 с.
	70. А.Ю. Киселевская, «Глубокие нейронные сети: автоматическое обучение распознаванию вредоносных программам. Генерация и классификация подписей», Молодой ученый, 2017, №. 47(181), С. 15-18.
	71. Б. Айтчанов, И. Бапиев, А. Корченко, В. Погорелов, Л. Терейковская, «Концептуальная модель обеспечения эффективности нейросетевого распознавания кибератак», Труды международной научно-практической конференции «Математические методы и информационные технологии макроэкономического анализа и экономической политики», посвященной празднованию 80-летнего юбилея академика НАН РК Абдыкаппара Ашимовича Ашимова, 11-12, С. 321–325, 2017.
	72. Б. Бенджамин, Б. Ребекка, О. Тони, «Прикладной анализ текстовых данных на Python. Машинное обучение и создание приложений обработки естественного языка», СПб.: Питер, 2019, 368 с.
	73. Б.С. Ахметов, А.И. Иванов, В.А. Фунтиков, А.В. Безяев, Е.А. Малыгина, «Технология использования больших нейронных сетей для преобразования нечетких биометрических данных в код ключа доступа», Монография, Алматы: ТОО «Издательство LEM», 2014, 144 с.
	74. В. Погорелов, «Проблематика використання нейромережевих систем розпізнавання кібератак», Науковий журнал «Комп'ютерно-інтегровані технології: освіта, наука, виробництво», №27, С. 67–74, 2017.
	75. В. Погорєлов, «Використання графу залежностей значень і станів у задачі розпізнавання поліморфних комп’ютерних вірусів», Стан та удосконалення безпеки інформаційно-телекомунікаційних систем (SITS’ 2020), Миколаїв, 2020, C. 34-35.
	76. В. М. Міхайленко, Л. О. Терейковська, І. А. Терейковський., Б.Б. Ахметов, «Нейромережеві моделі та методи розпізнавання фонем в голосовому сигналі в системі дистанційного навчання, Монографія», К.: ЦП «Компринтр», 2017, 252 с.
	77. В. Погорелов, «Нейромережеві моделі та методи розпізнавання комп’ютерних вірусів», Дис. Канд. техн. наук: 05.13.21, Нац. авіац. ун-т., Київ, 2020, 166 с.
	78. В. Погорелов, «Нейромережевий метод розпізнавання комп’ютерних вірусів», VI Міжнародна науково-практична конференція «Актуальні питання забезпечення кібербезпеки та захисту інформації», 2020, С. 88-93.
	79. В.А. Хорошко, А.А. Чекатков, «Методы и средства защиты информации», Киев: Издательство «Юниор», 2003, 504 с.
	80. В.Д. Козюра, В.О. Хорошко, М. Є. Шелест Козюра В.Д., «Аналіз кібернетичної безпеки інформаційного суспільства», Інформаційна безпека людини, суспільства, держави, № 1, С. 163-170, 2017.
	81. Державний стандарт України, Захист інформації. Технічний захист інформації. Терміни та визначення. ДСТУ 3396.2-97.82. Е. Путин, А. Тимофеев, «Классификатор для статического обнаружения компьютерных вирусов, основанный на машинном обучении», International Journal «Information Technologies & Knowledge», Vol. 8, № 2, 2014, рр. 103-112.
	83. И.М. Бапиев, «Нейросетевые модели и методы противодействия атакам на сетевые ресурсы информационных систем», Информационные системы Алматы, диссертация на соискание ученой степени доктора философии (PhD), 127 с, 2018.
	84. І. Dychka, D. Chernyshev, I. Tereikovskyi, L. Tereikovska , V. Pogorelov, «Malware Detection Using Artificial Neural Networks», Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, Vol. 938. Springer, Cham, pp.3-12, 2019.
	85. І. Tereikovskyi, V. Pogorelov, O. Tereikovskyi, «Determination of structural parameters of a multilayer cyber threat detection perceptron», Aviation in the XXI-st Century, 2018, pр. 3.3.1 – 3.3.4.
	86. І. Терейковський «Нейромережевий поведінковий аналізатор антивірусної системи», Захист інформації, № 2, С. 67-70, 2012.
	87. І. Терейковський, «Нейронні мережі в засобах захисту комп’ютерної інформації: монографія», К.: ПоліграфКонсалтинг, 2007, 209 с.
	88. І. Терейковський «Вдосконалення алгоритму навчання багатошарового персептрону, призначеного для розпізнавання мережевих атак», Правове, нормативне та метрологічне забезпечення системи захисту інформації в Україні, Випуск 2(24), С. 65-70, 2012.
	89. І. Терейковський, «Використання нейронних мереж при розпізнаванні макровірусів», Правове, нормативне та метрологічне забезпечення системи захисту інформації в Україні, № 2 (13), С. 176-183, 2006.
	90. І. Терейковський, «Нейромережева методологія розпізнавання інтернет-орієнтованого шкідливого програмного забезпечення», Безпека інформації, Т. 19, № 1,С. 24-28, 2013.
	91. І. Терейковський, «Нейромережеві моделі, методи і засоби оцінювання параметрів безпеки інтернет-орієнтованих інформаційних систем», Дис. д-ра техн. наук: 05.13.21, Нац. авіац. ун-т., Київ, 2015, 430 с.
	92. І. Терейковський, О. Заріцький, Л. Терейковська, В. Погорелов, «Метод розробки архітектури глибокої нейронної мережі, призначеної для розпізнавання комп’ютерних вірусів», Захист інформації, Т. 20, № 3, C. 188-199, 2018.
	93. Л. Терейковська, Є. Іванченко, В. Погорелов «Метод адаптації глибокої нейронної мережі до розпізнавання комп’ютерних вірусів», Науковий журнал «Комп’ютерно-інтегровані технології: освіта, наука, виробництво», Луцьк, Випуск № 35, С. 198-205, 2019.
	94. Нормативний документ системи технічного захисту інформації.Термінологія в галузі захисту інформації в комп’ютерних системах від несанкціонованого доступу НД ТЗІ 1.1-003-99.
	95. О. Корченко, І. Терейковський, А. Білощицький, «Методологія розроблення нейромережевих засобів інформаційної безпеки Інтернет-орієнтованих інформаційних систем», К.: ТОВ «Наш Формат», 2016, 249 с.
	96. О. Г. Корченко, І. А. Терейковський, С. В. Казмірчук, «Верифікація нейромережевих методів розпізнавання кібератак», Науково-технічний збірник «Управління розвитком складних систем» Київського національного університету будівництва і архітектури, 2014, Випуск 17, С. 168-172.
	97. О.Г. Руденко, Є.В. Бодянський, «Штучні нейронні мережі», Навч. посіб., Харків: ТОВ «Компанія СМІТ», 2006, 404 с.
	98. Оценка точности алгоритма распознавания вредоносных программ на основе поиска аномалий в работе процессов, М. В. Баклановский, А.Р., Ханов, К.М. Комаров [и др.], Научно-технический вестник информационных технологий, механики и оптики, 2016, Т. 16, №. 5, С. 823–830.
	99. П.В. Збицкий, «Функциональная сигнатура компьютерных вирусов», Доклады ТУСУРа, № 1 (19), часть 2, июнь 2019, с. 75-76.
	100. Р.Ю. Демина, «Особенности программной реализации алгоритмов методики формирования обучающего множества для бинарных классификаторов, используемых в антивирусном эвристическом статическом анализе», Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2017, номер 2, с. 62–68.
	101. С. Николенко, А. Кадурин, Е. Архангельская, «Глубокое обучение», СПб.: Питер, 2018, 480 с.
	102. С. Рассел, П. Норвиг, «Искусственный интеллект: современный подход», 4-е изд, пер.с англ. К.А. Птицына, М.: Вильямс, 2017, 1408 с.
	103. С. Семенов, С. Гавриленко, С. Глоба, О. Бабенко, «Розробка системи виявлення комп’ютерних вірусів на основі нейронної мережі АРТ-1», Системи обробки інформації, 2015, Випуск 10 (135) с. 126-129.
	104. У. Микелуччи, «Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов», Пер. с англ., СПб.: БХВ-Петербург, 2020, 368 с.
	105. Шолле Франсуа, «Глубокое обучение на Python», СПб.: Питер, 2018, 400 с.
	106. Я. Гудфеллоу, И. Бенджио, А. Курвилль, «Г93 Глубокое обучение», пер. с анг. А.А. Слинкина, 2-е изд., испр, М.: ДМК Пресс, 2018, 652 с.

