
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE

“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”

Boiarіnova Y.E., Kuchmii O.O.,
Tarasenko-Klyatchenko O.V.

FUNDAMENTALS OF PROGRAMMING
BASIC CONSTRUCTIONS

Laboratory Work Tutorial

Рекомендовано Методичною радою КПІ ім. Ігоря Сікорського

як навчальний посібник для студентів, які навчаються

за спеціальністю 121 «Інженерія програмного забезпечення»

(освітня програма «Інженерія програмного забезпечення мультимедійних та

інформаційно-пошукових систем»)

Kyiv

Igor Sikorsky Kyiv Polytechnic Institute

2023

Рецензенти: Клятченко Ярослав Михайлович, к.т.н., доцент
Заболотня Т.М., к.т.н., доцент

Відповідальний редактор

Легеза Віктор Петрович, д-р техн. наук, проф.

1

Гриф надано Методичною радою КПІ ім. Ігоря Сікорського
за поданням Вченої ради факультету прикладної математики

Electronic online educational publication

Boiarinova Yulia, PhD, Associate Professor
Kuchmii Oksana, Assistant

Tarasenko-Klyatchenko Oksana PhD, Associate Professor

FUNDAMENTALS OF PROGRAMMING.
BASIC CONSTRUCTIONS

LABORATORY WORK TUTORIAL

FUNDAMENTALS OF PROGRAMMING. BASIC CONSTRUCTIONS: Laboratory Work Tutorial
[Електронний ресурс]: tutorial is aimed at students of the specialty 121 “Software Engineering”
(educational program «Software Engineering of Multimedia and Information Retrieval Systems») /
Igor Sikorsky Kyiv Polytechnic Institute; Yulia E.Boiarinova, Oksana O.Kuchmii, Oksana V.
Tarasenko-Klyatchenko. – Electronic text data (1 file: 10 MB). – Kyiv: Igor Sikorsky Kyiv
Polytechnic Institute, 2023. – 116 р.

This tutorial is developed for familiarizing students with basic of programming in C. The tutorial
includes the introduction, 6 chapters, tasks for laboratory work, 2 appendixes and a list of
recommended literature. For each laboratory task there are examples of implementation, description
of the task, theoretical information, guidelines. The tutorial is aimed at students of the specialty 121
“Software Engineering”, educational program “Software Engineering of Multimedia and Information
Retrieval Systems” of the Faculty of Applied Mathematics of Igor Sikorsky Kyiv Polytechnic
Institute.

Y.E.Boiarinova, O.O. Kuchmii, O.V. Tarasenko-Klyatchenko, 2023

Igor Sikorsky Kyiv Polytechnic Institute, 2023

2

INTRODUCTION ... 4

1 INTRODUCTION TO PROGRAMMING ... 5

1.1 ALGORITHMS AND PROGRAMS .. 5

1.2 PROGRAMMING LANGUAGES .. 6

1.3 HISTORY OF LANGUAGE C .. 8

1.4 CHARACTERISTICS OF C-SYSTEMS ... 9

1.5 PROGRAMMING COMPILERS .. 10

2 FAMILIARITY WITH THE LANGUAGE C .. 11

2.1 ALPHABET OF LANGUAGE C .. 11

2.2 VARIABLES AND TYPES OF VARIABLES, DECLARATION OF VARIABLES IN C LANGUAGE ... 12

2.3 OUTPUT FUNCTION IN C LANGUAGE ... 13

2.4 INPUT FUNCTION IN C LANGUAGE .. 15

2.5 ASSIGNMENT OPERATIONS ... 16

2.6 EQUALITY AND RELATION OPERATIONS .. 17

3 PROGRAM MANAGEMENT .. 18

3.1 MANAGEMENT STRUCTURES ... 18

3.1.1 Management structure if/else ... 19

3.1.2 Operations for increment and decrement .. 21

3.1.3 Logical operations .. 22

3.1.4 Logical multiplication ... 22

3.1.5 Logical addition .. 23

3.1.6 Logical operation of negation .. 23

3.1.7 Structure with multiple choice switch .. 24

3.2 REPETITION STRUCTURES ... 27
3.2.1 Repetition structure for ... 27
3.2.2 The repetition structure while ... 28
3.2.3 The repetition structure do/while ... 29

3.3 COMMAND BREAK AND CONTINUE .. 30

4 ARRAY ... 32

4.1 ARRAY IN PROGRAMMING (LANGUAGE C) ... 34

4.2 ARRAY INVERSION .. 35

4.3 ACTIONS WITH ARRAY ELEMENTS ... 38

4.4 MULTIDIMENSIONAL ARRAYS .. 41

4.5 INPUT / OUTPUT OF MULTIDIMENSIONAL ARRAYS.. 43

FUNCTIONS .. 45

3

5.1 FUNCTION DEFINITION ... 46

5.2 PROTOTYPE OF FUNCTION ... 49

5.3 HEADER FILES .. 49

5.4 FUNCTION CALL .. 50

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) .. 52

TASKS ... 68

TASK 1. THE SIMPLEST OPERATORS OF THE C PROGRAMMING LANGUAGE .. 68

TASK 2. CALCULATE THE FUNCTION ... 76

TASK 3. DEVELOP A PROGRAM USING THE OPERATOR SWITCH ... 84

TASK 4. CALCULATION OF THE SUM ... 90

TASK 5. CREATE PROGRAM WITH ONE-DIMENSION ARRAY .. 97

TASK 6. USING OF FUNCTIONS .. 104

APPENDIX A .. 113

APPENDIX B .. 114

SOURSES... 116

4

INTRODUCTION

Recent decades have been marked by the rapid development of information

technologies, which is connected, among other things, with the emergence of new

methods of developing software products. New programming languages, new tools,

new software development technologies appeared. Nowadays, the process of creating

software applications has become much easier, but their value and quality depends, as

before, on the professionalism of the programmer, on the depth of his knowledge.

Learning to program in the C language provides an opportunity for a teacher at a

professional level to teach a student how to develop software applications, to illustrate

and explain how huge programs are built from the elementary constructions of the

language.

The C programming language is a typed general-purpose programming language

developed in 1969-1973 by Bell Labs employee Dennis MacAlistair Ritchie as a

development of the B language. Initially, the compiler from this language was

developed for implementation on the UNIX operating system, but was later ported to

many other platforms. According to the design of the C language, its constructions are

very close to typical machine instructions, thanks to which it found use in projects for

which assembly language was peculiar. The C programming language is currently used

in the creation of operating systems, drivers, console-type applications, for controlling

microprocessor technology. Many modern programming languages are built on the

basic constructions of the C language. These include C++, C#, Java, Python, etc.

5

1 INTRODUCTION TO PROGRAMMING

1.1 Algorithms and programs

If a specialist is faced with a task related to calculation, he, first of all, develops

an algorithm.

The procedure for solving the problem in the form

- actions to be performed;

- the sequence in which these actions must be performed;

is called an algorithm. In other words, an algorithm is a defined sequence of

actions, the execution of which ensures the achievement of the final goal.

The algorithm can be described in words, can be depicted graphically (block

diagram). If there is a task to implement an algorithm on a computer, it must be

translated into a programming language.

A program is a defined sequence of actions written in a programming language,

the execution of which will lead to a final goal.

If expressed in the language of a programmer, the actions to be performed are

statements, and determining the sequence of their execution is called program control.

Algorithms themselves always consist of three possible structures:

1) following (linear structure);

2) branching (structures with condition verification);

3) repetition (cyclic structures).

Any combination of basic structures, or only one of them, may be present in a

given particular algorithm.

In the dictionary of any language there are words to describe the three possible

structures of the algorithm, special graphic shapes are designed to graphically represent

the algorithm, in any programming language there are tools for the implementation of

a linear structure, a structure with condition verification, and a cyclic structure.

6

1.2 Programming languages

Programmers develop programs in various programming languages, some of

which are directly understandable to the computer, while others wander through an

intermediate stage - translation. All languages can be divided into three general types:

1) machine languages;

2) assembly language;

3) high-level languages.

Each computer can understand its own machine language. This language is

directly related to its hardware part. Machine languages generally consist of a sequence

of numbers (usually 0 and 1), which are commands to perform elementary operations.

A specific machine language can only be used with a specific type of computer.

Machine languages are not easy to use

As computers spread, it became quite certain that programming in machine

languages inhibits the development of computer technology. Then there are assembly

languages, where English abbreviations are used instead of a sequence of numbers to

represent elementary operations.

Translator programs called assemblers have been developed to convert assembly

language programs into machine language programs.

But even in assembly language, it was still necessary to write a large number of

instructions to implement the solution of simple problems. To speed up the

programming process, high-level languages were developed, in which it is enough to

write one statement to perform several actions:

Special programs called compilers are used to convert high-level language

programs into machine language programs.

A high-level programming language is largely close to human language and frees

you from the knowledge of the specifics of a specific processor.

High-level programming languages appeared, became popular, and disappeared

with the advent of new computer technologies.

7

The high-level language FORTRAN (FORmula TRANslator) was developed by

IBM in 1954-1957 for use in scientific and engineering applications that require

complex mathematical calculations. To this day, software continues to be developed in

this language.

Among the "long-lived" is the high-level language COBOL (Common Business

Oriented Language), which was created in 1959. This language is used to develop

commercial application programs that require high accuracy when processing large

amounts of data.

The PASCAL programming language (named after the mathematician, physicist,

writer, philosopher Blaise Pascal) was developed by the Swiss scientist Nicholas Wirth

in 1968 specifically to teach programming to students. Today, it is already used not

only for training, but also as a tool for developing professional software.

8

1.3 History of language C

The C language originates from two languages, BCPL and B. This language was

developed by Dennis Ritchie in 1972. The C language is hardware-independent, and

programs written in this language can be ported to a large number of systems.

At the end of the 70s, Kernighan and Ritchie's book "The C Programming

Language" appeared. This is probably the most popular book in the field of

programming.

The use of the C language for different types of computers led to the appearance

of different variants of the language, which were often incompatible.

In 1989, the American National Standards Committee developed a standard for

the C language, called ANSI C. Thanks to this standard, programs written in the C

language can run virtually unchanged on most computer systems.

At Bell Labs, Björn Straustrup developed an addition to the C language, namely

C++. The C++ language provides object-oriented programming, which, in turn,

significantly increases the productivity of software development by a team of

programmers.

 Almost all operating systems were developed in C or C++ languages.

9

1.4 Characteristics of C-systems

A set of software products that allow you to develop programs in the C language

are called C-systems.

All C systems basically consist of three parts: an environment, a programming

language, and a standard library. Library functions are not part of the C language; they

perform operations such as input/output, mathematical calculations.

During the development of a C program, there are six stages: editing,

preprocessing, compilation, layout, loading, execution.

The first stage is intended for the development of the program text. The

programmer types the program and performs the necessary corrections with the help

of the editor program (the result is the original text, which is stored in a file with the

extension "c" or "cpp").

At the second stage, the preprocessor of the C language executes special

commands - directives of the preprocessor, which indicate what should be attached to

the program file, what should be replaced in the program text, etc. The preprocessor is

automatically started by the compiler.

The third stage is performed by the compiler. The compiler translates (translates)

the program from the C language into machine language code (the result is object code,

which is stored in a file with the extension “.obj”).

At the fourth stage, an executable image is created (saved in a file with the

extension "exe"), which, in addition to the program itself, contains all functions that

are referenced in the program itself.

The fifth stage is called loading, during which the program is placed in the

computer's memory.

And, finally, the sixth stage is the stage of program execution by the computer

processor.

10

1.5 Programming compilers

Special programs called compilers are used to convert high-level language

programs into machine language programs. The input of the compiler is the program

code in C, the result of the compiler is the so-called object code of the program, which

contains processor commands in machine language.

There are many compilers and integrated development environments:

• Borland C++

• C++Builder

• Microsoft Visual C++

• Microsoft Visual Studio

• Dev-C++

• Code::Blocks

• Embarcadero RAD Studio and others.

11

2 FAMILIARITY WITH THE LANGUAGE C

2.1 Alphabet of language C

The alphabet of the C/C++ language consists of:

- capital and small letters of the Latin alphabet: "А", ..., "Z", "а", ..., "z";

- digits 0, 1, ..., 9;

- special characters: " ' () [] {} < > . , ; : ? ! ~ * + - = / \ | # % $ & ~ @ and the

underscore character _.

Programs consist of syntactic constructions called commands (other names are

statements). Commands are built with lexemes - indivisible elements of language:

words, numbers, symbols of operations.

Words are divided into identifiers and keywords.

An identifier is a name that the user gives to objects, for example, variables,

constants, functions. All words can consist of lowercase or uppercase letters of the

English alphabet, numbers, and also contain an underscore. An identifier always starts

with a letter or an underscore. Lowercase and uppercase letters that have the same

meaning in the C language are considered different symbols.

Reserved identifiers are called keywords. They are used to write commands. It is

not possible to change the assignment of the keyword in the program. The main

keywords of the C language: int, double, main, break, printf, scanf, while, for, switch,

struct, return, etc. (see Appendix A).

12

2.2 Variables and types of variables, declaration of variables in c

language

From a logical point of view, all data that is processed in the program is

represented by variables. From a technical point of view, variables are cells in RAM.

Variables can be assigned specific values, which means writing these values to

memory cells. Variable values can be used to evaluate expressions. This results in the

operation of reading values from memory cells.

Variable values can be of different types (see Appendix B). The main types are:

int – contains whole numbers;

float, double – contains real numbers (with floating point);

char – contains one character.

Any variable has a name - a correct identifier of the C language.

Each variable must be declared. A variable declaration is a statement that causes

a cell to be reserved for a variable. This cell is accessed by variable name. A variable

declaration also contains an indication of the type of values for that variable. For

example, the following statements will declare three variables a, b, c of the above types:

int a;

float b;

char c;

13

2.3 Output function in C language

The printf function is used to display the values of variables, expressions, and

text literals on the screen

Function

 printf ("Format String", object 1, object 2, ..., object n);

The Format String consists of the following elements:

− control characters;

− text submitted for direct output;

− formats designed to display the values of variables of different types.

Objects may be missing.

• Control characters are not displayed on the screen, but control the location of the

displayed characters. A distinctive feature of the control character is the presence

of a backslash '\' in front of it.

• The text is displayed in double quotes.

• Formats are required to indicate the form in which the information will be

displayed. A distinctive feature of the format is the presence of the character

percentage '%' in front of it.

Basic control characters

\ n' - new line;

'\ t' - horizontal tab;

'\ v' - vertical tab;

'\ b' - return to the character;

'\ r' - return to the beginning of the line;

'\ a' Is an audible signal.

14

Formatting commands (format specifiers) for printf ()

 Format

%с Character of type char
%s Character string
%d An integer of type int with a sign in decimal notation;

%o An integer of type int with a sign in the octal number system

%x An integer of type int with a sign in the hexadecimal number system
%u An integer of type unsigned int;
%f Decimal number is a single precision float precision format
%lf Decimal number is a double-precision floating-point format
%ld An integer of type long int with a sign in decimal notation
%lu An integer of type unsigned long int
%lx An integer of type long int with a sign in hexadecimal
%e Decimal number in the form x.x e + xx
%E Decimal number in the form x.x E + xx
%hd An integer of type short with a sign in decimal notation

%hu An integer of type unsigned short

%hx An integer of type short with a sign in hexadecimal

15

2.4 Input function in C language

The scanf () data input function reads the data input from the keyboard, converts

it to an internal format, and transmits the functions. The programmer sets the rules for

interpreting the input data using the format string specifications.

General form of function scanf()

scanf ("Format string", variable address 1, variable address 2, ...);

The string of formats is similar to the function printf().

The ampersand symbol '&‘ is used to generate the variable address

Address = & object

A string of formats and a list of arguments for the function are required.

Arithmetic of language C

Action in C
Arithmetic

operation

Algebraic

expression
Expression of C

Addition + а+7 а+7

Subtraction - р-3 р-3

Multiplication * ар а*р

Division / а/р а/р

Calculation of

surplus
% x mod y x%y

• All arithmetic operations use two operators. The result of dividing two integers

will also be an integer (7/4 = 1, 17/18 = 0).

• The operation of calculating the remainder of the fraction can be performed only

with integers.

• In C, the calculation of an arithmetic expression is performed in an order that

corresponds to the rules of seniority

16

2.5 Assignment operations

The C language provides several assignment operations.

c = c + 3; or c + = 3;

Any type operator

variable = variable operation expression;

can be written as

variable operation = expression;

17

2.6 Equality and relation operations

• C operators either perform certain actions (such as calculating or inputting /

outputting data) or make decisions. In the program, decision-making occurs

based on whether a statement is true or false (the latter is called a condition).

• Conditions are set using equality and relation operations. Relationship

operations have the same priority and are performed from left to right. Equality

operations have lower priority and are also performed from left to right.

Standard

operation
Operation in C Example Explanation

= == x==y x is equal to y

≠ != x!=y x is not equal to y

> > x>y x is greater than y

< < x<y x is less than y

≥ >= x>=y
x is greater than or

equal to y

≤ <= x<=y
x is less than or

equal to y

18

3 PROGRAM MANAGEMENT

3.1 Management structures

• The selection structure is used to select one of the alternative courses of action.

• The if structure is called a single-choice structure because it selects or ignores a

single action. In the if structure, the specified action is performed only when the

condition is true; otherwise the action is skipped.

General view of the structure if

if (condition) {block};

• The keyword if means condition - an expression, the result of which can have

one of two values - either true (not equal to 0), or false (equal to 0);

• Block (as mentioned earlier) is one or more operators enclosed in curly braces

19

3.1.1 Management structure if/else

The if / else structure is called a double-choice structure because it chooses

between two alternative actions. The if / else structure allows the programmer to

specify that, depending on whether the condition is true or false, different actions must

be performed.

General view of the structure if/else

if (condition) {block_1} else {block_2}

Example. Write a notification depending on the air temperature:

temperature less than -20 - very cold

less than -5 and more than -20 - cold

less than 0 more than -5 - cool

more than 0 - normal

condition block 1 true

false

block 2

20

Program

#include <stdio.h>

int main()

{int t;

printf (“Input temperature\n”);

scanf(“%d”,&t);

if (t<=-20) {

printf(“Very Cold\n”);

printf(“Very Cold\n”);

}

else if (t<=-5) printf(“Cold\n”);

 else if (t<=0) printf(“Cool\n”);

 else printf(“Normal\n”);

return 0;

}

21

3.1.2 Operations for increment and decrement

• The C language also provides a unary increment operation ++

• and unary decrement operation --.

x=x+1; x+=1; ++x; x++;

y=y-1; Y-=1; --y; y--;

If increment or decrement operations are placed before a variable, they are called

pre-increment and pre-decrement operations, respectively.

If increment or decrement operations are placed after a variable, they are called

post-increment and post-decrement operations, respectively.

The operation of pre-increment (pre-decrement) on the variable causes an increase

(decrease) of the variable by 1, and then the new value of the variable is used in the

expression in which it appears.

The operation of the post-increment (post-decrement) over the variable causes the

use of the variable in the expression in which it appears, and then increase (decrease)

the variable by 1.

22

3.1.3 Logical operations

Language C provides logical operations that allow you to build complex

conditions by combining simple ones. The following operations are logical operations:

&& - logical multiplication(logical “AND”);

|| logical addition (logical “OR”);

! – logical negation (logical “NOT”).

3.1.4 Logical multiplication

• If in some place of the program it is necessary to provide truth of two conditions

at the same time for a choice of some branch of its performance, logical

multiplication is applied.

• if (condition1) && (condition2)) action;

• This condition is true if both simple conditions are true.

• If at least one of these simple conditions is not true, or both simple conditions

are not true, then the program ignores the output statement and goes to the

statement that follows the if.

Expression А Expression В А&&В

T T T

T F F

F T F

F F F

23

3.1.5 Logical addition

If in some place of the program it is necessary to provide truthfulness of at least

one of two conditions at the same time for a choice of some branch of its performance,

logical addition is applied.

if (condition1) || (condition2)) action;

Expression А Expression В А||В

T T T

T F T

F T T

F F F

3.1.6 Logical operation of negation

• The logical negation operation allows the programmer to "reverse" the

condition.

• This operation, in contrast to the operations && i ||, is unary, ie only one

condition is used as an operand.

• The logical negation operation is placed before the condition when it is

necessary to select the branch of the program with a false condition

Expression А !А

T F

F T

24

3.1.7 Structure with multiple choice switch

• Sometimes the algorithm involves a sequence of decisions, when there is an

independent check of a variable or expression for equality of each of the constant

values, and depending on this, different actions are performed.

• In the C language for processing of such situations the structure with multiple

choice of switch is provided.

• The switch selection statement is a very convenient way to replace the multiple

use of if statements.

switch (expression) operation;

where operation :

case const expression: {block}

or

default : {block }

You should also pay attention to the keyword default , it is not necessary, but at

the same time it is necessary to handle unexpected situations. For example, when the

value of a variable does not match one of the values of the case, then the code that is

in the default is executed. This can be useful if we do not expect any of the case values

to match the value of the variable in the switch conditions. In this case, the code in the

default branch worked.

Example. Write a program that simulates the work of a calculator: enter two

numbers and one of the arithmetic operations (+, -, *, /), the result display on the screen.

25

#include <conio.h>

#include <stdio.h>

int main()

{

int arg1, arg2;

 char oper;

 printf(“First number:");

 scanf("%d",&arg1);

 printf(" Second number:");

 scanf("%d",&arg2);

 printf(" Operation:");

oper=getch();

 switch (oper) {

 case '+': printf("%d+%d=%d",arg1,arg2,arg1+arg2); break;

 case '-': printf("%d-%d=%d",arg1,arg2,arg1-arg2); break;

 case '*': printf("%d*%d=%d",arg1,arg2,arg1*arg2); break;

 case '/': printf("%d/%d=%f",arg1,arg2,(float)arg1/arg2); break;

default:printf(" The operation symbol is entered incorrectly!"); break;

 }

 getch();

return 0;

}

This program variables arg1, arg2 integers with which action will occur. The

variable oper of character type (char - any one character) is intended to save the

operation to be performed. The getch () function returns the character that was entered

on the keyboard. This symbol is assigned to the variable oper.

26

The keyword switch is followed by the name of the variable oper in parentheses.

This variable is a control expression in the structure. The value of this expression is

compared to each constant expression after the case label.

If the values of the control and constant expressions match, the operators for this

case are executed. The break statement causes control to be passed to the first statement

after the switch structure.

If there is no match between the values of the control and constant expressions,

the actions of the default block are performed. The default label may be missing. Then,

in the absence of coincidence of the values of the control and constant expressions, any

operator of the switch structure is not execute.

27

3.2 Repetition structures

Most programs include the repetitions or the loops.

The loop is a group of commands that are repeatedly executed by a computer as

long as some condition of the continuation remains true.

The operators that are included in the repetition structure make up the body of this

structure. The body of the repetition structure can be simple (single operator) or

complex operator (block).

In language C there are 3 repetition structures:

• Repetition structures for

• Repetition structures while

• Repetition structures do/while

3.2.1 Repetition structure for

Such repetitions are sometimes called definite repetitions, because it is known in

advance how many times the loop will be performed. The control variable is used to

count the number of repetitions.

The control variable changes each time (usually increased by 1) when the loop

body is executed.

When the value of the control variable indicates that the required number of

repetitions is performed, the loop ends, the computer continues to execute the program

from the operator that is following the structure of repetition.

General format of the structure for

for (expression1; expression2; expression3)

{ body of the loop}

where expression1 initiates the loop control variable,

expression2 is a condition for continuing the loop,

expression3 indicates how the loop control variable changes.

28

To implement the repetition structure controlled by the counter, the language C

provides a structure for. This structure automatically controls all the details of such

repetition

Example. Print number from 1 to 10

#include <stdio.h>

int main()

{ int counter ;

for (counter=1; counter<=10; counter++)

 printf("%d ",counter);

return 0;

}

3.2.2 The repetition structure while

• The repetition structure of while or repetition, controlled by the control value

• Such repetitions are called indeterminate repetitions, because it is not known in

advance how many times you need to perform the loop. Control values are used

to control the number of repetitions.

• To implement the repetition structure controlled by the control value, the

language C uses the structures while, do \ while.

The format of the repetition structure while

while (condition) {block}

If the expression has a value that is not equal to zero (true), the operators of the

body loop (block) are executed.

After that, the program returns to the calculation of the expression.

As soon as the value of the expression matches 0 (false), the loop stops, and the

program starts working from the first statement after the while structure.

29

Example. Finding the first degree 2, which more than 1000

#include <stdio.h>

int main()

{ int product=2;

while (product <= 1000)

 product = 2 * product;

printf(“Rezult=%d”,product);

}

3.2.3 The repetition structure do/while

The do/while repetition structure is similar to the while structure. In the while

structure, the loop continuation condition is checked at the beginning of the loop before

executing the loop body operators.

The do/while structure checks the condition of the continuation of the loop after

the execution of the loop body, and therefore the loop body will be executed at least

once.

After completing the do/while loop, program execution continues from the

statement that is written after the while sentence.

The format of the repetition structure do/while

do {block} while (expression)

where

block–sequence of actions(the body loop)

expression - condition for finish the loop

30

Example. Print number from 1 to 10

#include <stdio.h>

int main()

{

 int counter = 1;

do {

 printf("%d ",counter);

 } while (++counter <= 10);

return 0;

}

3.3 Command break and continue

• The break and continue statements are designed to change the progress of

actions in the program.

• Execution of the break statement in the structures switch, for, while, do / while

will lead to immediate exit from the structure.

• Execution of the program continues from the first statement, which is recorded

after it.

Example

#include <stdio.h>

int main()

{ int x;

for (x = 1; x <= 10; x++) {

 if (x == 5)

 break;

 printf("%d ",x);

 }

 printf("Break on x == %d",x);

return 0;

}

31

In the example, the break operator is used in the for structure. When the value of

the variable x becomes equal to 5, the break statement is executed. This completes the

loop, and the program continues to run from the printf statement. The loop is performed

completely only four times.

Executing the continue statement in the for, while, do / while structures will skip

the remaining statements in the body of these structures and execute the next iteration

of the loop.

Example

#include <stdio.h>

int main()

{ int x;

 for (x = 1; x <= 10; x++) {

 if (x == 5)

 continue;

 printf("%d ",x);

 }

return 0;

}

In this example, the continue operator is used in the for structure. When the value

of the variable x becomes equal to 5, the operator continue. This allows you to skip

the printf statement and the program continues to perform the next iteration of the loop.

32

4 ARRAY

An array is a group of memory cells that have the same name and type.

To use a specific cell or array element, specify the name of the array and offset

that cell relative to the first cell or the beginning of the array.

 The offset is specified after the array name in square brackets and is called the

array index.

For example, suppose that an array C has 12 elements of an integer type.

The first element in any array has an index of 0.

Thus, the first element is denoted by C [0].

The second element has an offset relative to the beginning of the array by one

integer.

Thus, the second element is denoted by C [1].

In the general case, the i-th element of the array is denoted by C [i-1].

Arrays take up space in RAM.

 To declare an array C or reserve 12 elements for an array of integers must be

written

int C [12];

With one ad, you can reserve memory for multiple arrays. For example, the

following example reserves memory for 100 elements of an array of integers B and 27

elements of an array of integers X:

int B[100], X[27];

Arrays can also be declared for other data types: int, char, float, double…

For example, a character string is an array of characters, that is, an array of type

char.

Like variables of other types, array elements can be initiated by values at the time

they are declared. To do this, after declaring the array put an equal sign "=" and in

curved brackets write a list of values for all elements of the array. The values in the list

are separated by commas:

int A123A [12] = {32, 27, 64, 18, 96, 12, 45, 23, 50, 9, 2, 0}.

A123A[0]=32; A123A[1]=27;…A123A[11]=0;

33

If the values in the list are less than the elements of the array, the remaining

elements are automatically initiated by 0. However, specifying more values in the

initialization list than the number of elements of the array will result in a syntax error.

If array elements are initiated at the time the array is declared, you can not specify

the size of the array. Then the size of the array will be equal to the number of values in

the initialization list. For example,

int n [] = {1, 2, 3, 4, 5};

an array of five elements will be created.

Character arrays have several unique features. A character array can be initiated

by a string literal. For example,

char NAME1 [] = “first”;

initiates the elements of the array NAME1 by individual characters of the string

literal "first".

 The size of the array NAME1 is equal to the length of the string "first". The line

"first", in turn, consists of the corresponding letters and a special character at the end

of the line - "\ 0". All character strings in C end in this character.

Thus, the compiler calculates the number of elements in the array NAME1 as

equal to 6.

The previous initiated is equivalent to the following:

char NAME1 [] = {‘f’, ‘i’, ‘r’, ‘s’, ‘t’, ‘\ 0’};

A character array representing a string can be output using the printf function and

the % s conversion specifier:

printf (“% s \ n”, NAME1);

Line characters are displayed until the end of line ‘\ 0’ is detected.

GENERAL APPEARANCE OF THE ARRAY

34

4.1 Array in programming (Language C)

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

One-dimensional array declaration

int Array[10];

float B[200];

char T[15];

Example. Input / output of one-dimensional array

#include <stdio.h>

int main ()

{

int A[100];

/* Array A consists of 100 integers numbers */

int i,N;

printf (“Input quantity elements of the array\n:");

scanf("%d",&N);

printf (" Input array n:");

for (i=0; i <= N-1; i++)

scanf("%d",&A[i]);

printf (" The rezult array :");

 for (i=0; i <= N-1; i++)

 printf("%3d",A[i]);

 printf("\n");

return 0;

}

35

4.2 Array inversion

Example 1. 1 way- inversion with additional array

#include <stdio.h>

int main ()

{

int A[100],B[100];

int i,N;

printf (“Input quantity elements of the array \n:");

scanf("%d",&N);

printf (" Input array n:");

for (i=0; i <= N-1; i++)

scanf("%d",&A[i]);

for (i=0; i <= N-1; i++)

 B[i]=A[N-1-i];

for (i=0; i <= N-1; i++)

 A[i]=B[i];

printf ("The rezult array\n");

 for (i=0; i <= N-1; i++)

 printf("%3d",A[i]);

 printf("\n");

return 0;

}

36

Example 2. 2 way - inversion with additional variable

#include <stdio.h>

int main ()

{

int A[100];

int i,N,В;

printf (“Input quantity elements of the array \n:");

scanf("%d",&N);

printf (" Input array n:");

for (i=0; i <= N-1; i++)

scanf("%d",&A[i]);

for (i=0; i <= (N-1)/2; i++)

 {

 B=A[i];

 A[i]=A[N-1-i];

 A[N-1-i]=B;}

printf ("The rezult array\n");

 for (i=0; i <= N-1; i++)

 printf("%3d",A[i]);

 printf("\n");

return 0;

}

37

Example 3. 3 way- output inversion with indexes of array

#include <stdio.h>

int main ()

{

int A[100],B[100];

int i,N;

printf (“Input quantity elements of the array \n:");

scanf("%d",&N);

printf (" Input array n:");

for (i=0; i <= N-1; i++)

scanf("%d",&A[i]);

printf ("The rezult array\n");

 for (i=N-1; i >= 0; i--)

 printf("%3d",A[i]);

 printf("\n");

return 0;

}

38

4.3 Actions with array elements

Example 1. Filling the array with random numbers

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

 int main()

{

int i,n;

float x;

float A[10];

printf(“Input quantity elements of array ");

scanf("%d",&n);

srand(time(NULL));

 for (i=0;i<n;i++)

 {

 x=(float)(rand()%9)/24; // fractional part of a number

 A[i]= rand()%100+x; // random integers from 0 to 99 + fractional part x

}

printf("_________________________________\n");

 for (i=0;i<n;i++)

printf(" %5.2f",A[i]);

return 0;

}

39

Example 2. Search for the minimum element in the array

#include <stdio.h>

int main ()

{

int Arr[100];

int i,N,min;

printf(“Input quantity elements of array ");

scanf("%d",&N);

printf (" Input array by %d: elements\n",N);

for (i=0; i<N;i++) scanf("%d",&Arr[i]);

printf ("array :\n");

 for (i=0; i<N;i++) printf("%4d",Arr[i]);

// min=-200;

//min=1000;

min=Arr[0];

for (i=1; i <N; i++)

if (min>Arr[i]) min=Arr[i];

 printf("\nMin=%d",min);

return 0;

}

40

Example 3. Search for the maximum element in the array

#include <stdio.h>

int main ()

{

int Arr[100];

int i,N,max;

printf(“Input quantity elements of array ");

scanf("%d",&N);

printf (" Input array by %d elements\n",N);

for (i=0; i<N;i++) scanf("%d",&Arr[i]);

printf ("array:\n");

 for (i=0; i<N;i++) printf("%4d",Arr[i]);

// max=-200;

//max=1000;

max=Arr[0];

for (i=1; i <N; i++)

if (max<Arr[i]) max=Arr[i];

 printf("\nMax=%d",max);

return 0;

}

41

4.4 Multidimensional arrays

Arrays in C can have several indexes.

Multidimensional arrays are used, for example, to represent tables consisting of

values arranged in rows and columns. Arrays that require two indexes are two-

dimensional arrays; three indices - three-dimensional, etc. The ANSI standard states

that the C language must support at least 12 indexes.

Multidimensional array declaration

int A[3][4];

float B[3][7][2];

double QQQ[2][2];

char WW[4][3];

Example. Two-dimensional array int A[3][4]

 Column 0 Column 1 Column 2 Column 3

Row 0 a[0][0] a[0][1] a[0][2] a[0][3]

Row 1 a[1][0] a[1][1] a[1][2] a[1][3]

Row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Multidimensional arrays, like one-dimensional ones, can be initiated by their

declaration. For example, the declaration of a two-dimensional array a as follows

int a[3][4] = {{1, 2, 7,6}, {3 , 4, 8, 9}, {5, 6, 9,10}};

equivalent to an declaration

int a[3][4];

and twelve assignment operations

a[0][0] = 1; a[0][1] = 2; a[0][2] = 7; a[0][3] = 6;

a[1][0] = 3; a[1][1] = 4; a[1][2] = 8; a[1][3] = 9;

a[2][0] = 5; a[2][1] = 6; a[2][2] = 9; a[2][3] =10;

42

Example

#include <stdio.h>

int main ()

{

int a[3][4] = {{1, 2, 7,6}, {3 , 4, 8, 9}, {5, 6, 9,10}};

int i,j;

printf (" array by 3x4:\n");

for (i=0; i <3; i++)

{

 for (j=0; j<4;j++)

 printf ("%4d",a[i][j]);

 printf("\n");

}

printf("\n");

return 0;

}

43

4.5 Input / output of multidimensional arrays

Example program that allows the user to enter the dimension of the array

(quantity of rows and columns), and then fill it and display

#include <stdio.h>

int main ()

{

int Arr[10][10];

int i,j,N,M;

printf ("\nInput quantity of row of the array:");

scanf("%d",&N);

printf ("\nInput quantity of column of the array:");

scanf("%d",&M);

printf (" Input array by dimension %dx%d:\n",N,M);

for (i=0; i <N; i++)

 for (j=0; j<M;j++)

 scanf("%d",&Arr[i][j]);

printf ("array by %dx%d:\n",N,M);

for (i=0; i <N; i++)

{

 for (j=0; j<M;j++)

 printf ("%4d",Arr[i][j]);

 printf("\n");

}

 printf("\n");

return 0;

}

44

45

FUNCTIONS

The best way to develop a program and support large programs is to design the

program in the form of small separate parts - modules.

The modules of the C language are called functions. C programs are developed,

as a rule, by combining new functions that are developed by the programmer with the

functions that are included in the system library of the C language.

The standard C language library provides a large set of functions for performing

general mathematical calculations, character string processing, I / O, and more.

Standard functions simplify the work of the programmer.

The programmer can write the functions, that is to allocate in separate modules

some tasks to which performance it is possible to address from many points of the

program. These functions are often called programmer-defined functions.

Calling a function is called a function call. The function call specifies its name

and passes the information (as arguments) needed to perform the function.

After executing the function, the program returns to the place where the function

was called. A function call can be written to either the main function or any other

function.

Example of scheme of interaction of functions in the program

46

Function allows to separate the program into modules.

All variables that are declared in the body of a function are local variables - they

are known only to the function in which they are defined.

Most functions have a list of parameters. Parameters allow functions to exchange

information. Function parameters are also local variables.

5.1 Function definition

function_type_return function_name (parameter_list)

{

Local definition

Operators

}

The function_name can be any valid identifier.

 The function_type_return is the type of returned value.

If the void keyword is specified as the type, it means that the function returns

nothing.

 If the type of returned value is not specified, the compiler assumes that the type

has value int.

Parameter_list is a list of parameter declarations (comma-separated) that a

function receives when it is called.

47

If the function does not get values, the parameter_list is denoted by the void

keyword.

The type of each parameter must be described, except for the int type. If no type

is specified, the parameter is considered to be of type int.

Local declaration and operators in the middle of curly braces make up the body

of the function.

Before the first call, the function must be defined as above or using a prototype.

The compiler uses a function prototype to verify that the function call has the

correct return type, the correct number of arguments, the correct argument type and the

correct argument sequence.

Examples of function declarations

int Fun1 (int a, int b, int c);

char Fun2 (int x, int y);

void Fun3 (char ch, int num, int line);

float Fun4 (float q, float t, float r, int k) ;

int Fun5 (void);

void Fun6 (void);

float Fun7 (float q, double t, float r, int k) ;

There are ways to return control to the point in the program where the function

was called.

If the function does not return a result, control returns as soon as the right curly

brace occurs, terminating the body of the function,

or when performing the operator return.

If the function returns a result, the statement

return expression; // return (expression);

returns the value of the expression.

48

Example. Find the maximum of the three numbers and return this value.

#include <stdio.h>

int maximum(int x, int y, int z);

main ()

{

int a, b, c;

printf (“Input 3 numbers:");

 scanf("%d %d %d", &a, &b, &c);

 printf(“Max number: %d\n", maximum(a, b, c));

return 0;

}

/*Definition of function maximum*/

int maximum(int x, int y, int z)

{ int max=x;

 if (y > max)

 max=y;

 if (z > max)

 max=z;

 return max;

}

49

5.2 Prototype Of Function

Earlier it was stated that each function in the C language should have its own

prototype. The function prototype informs the compiler about the type of data that

returns the function; the number of parameters that the function receives; Type and

order of parameters. The compiler uses the prototype to check the correctness of the

function.

The prototype of the maximum function that is given above is the line

int maxumum (int x, int y, int z);

This prototype reveals that maximum receives three whole -type parameters (int)

and returns the result of the type int. The call that does not correspond to its prototype

will cause a syntactic error. The error also occurs if the function prototype does not

correspond to the function itself.

Another important consequence of the use of prototypes of functions is the

automatic translation of arguments, that is, the forced transformation of function

arguments to the appropriate type. In other words, the values of arguments that do not

meet exactly the types of parameters in the prototype of the function are converted into

the appropriate type before call. Automatic type of type translation is also used in

expressions that are formed from the values of two or more types. The main content of

the rule of such transformation - the lower type will be transferred to the higher.

5.3 Header files

As noted earlier, each function must have its own prototype. Prototypes of a

certain number of functions can be combined into a separate file called the title file.

The name of such a file is a permissible ID, and the extension is the letter "h".

Each standard library has its own header file, which contains prototypes for all

functions of this library, as well as identifying data and constants required for these

functions. Standard Language Language Libraries Files are recorded in corner brackets

<,> and are included in the program #include directive:

#include <stdio.h - contains prototypes of standard input/output library;

50

#include <conio.h> - contains prototypes of standard library of console

input/withdrawal;

#include <math.h> - contains prototypes of functions of the mathematical library;

#include <stdlib.h> - contains prototypes of functions to convert numbers into text

and text into numbers, prototypes of memory placement functions, generation of

random numbers, etc.;

#include <string.h> - contains prototypes of text processing;

#inClude <time.h> - contains prototypes of standard date and time management

library.

The programmer can create a header file and place prototypes of developed

functions. Such a file is also included in the #include directive, but writes in characters.

" For example, the Maximum.H header file can be included in the program by directive:

#include “maximum.h”

at the beginning of the program.

The difference in the headline of the system library header and the headline file

designated by the headline programmer is where the pre -processor will look for these

files. If the title file name is recorded in double paws, the pre -processor believes that

such a file is placed in the same directory as the file with the source text of the program.

If the file name is recorded in corner brackets, the search files will be kept in special

directory, which are determined depending on the specific implementation of the

compiler.

5.4 Function call

In the C language, as in many other programming languages, there are two ways

of calling a function - a call by value and a link to the link.

When the argument is used in the call by value, a copy of the argument value is

transmitted to the function. Changes that occur with a copy do not affect the value of

the variable in the function that transmits this copy. The transmission of the argument

by value should be used when the calling function does not need to be changed. In the

above example in the call of the function maximum (a, b, c) arguments are transmitted

51

by value, that is, three numbers are transmitted to the input of the function, which are

assigned to variable x, y, z, respectively.

If the body of the maximum function would somehow change the initial values of

x, y, z, this would not affect the variable A, B, C.

When the argument of the function is transmitted by the link, the address of this

argument is transmitted to the function being called. This, of course, leads to the fact

that any changes in the argument in the caused function occur and with a corresponding

variable in the function that causes. This allows you to return the function more than

one result (return operator), but as much as you like. For example, the scanf system

function is transmitted to a reference (address) to a variable that will be assigned to the

keyboard. The assignment of the value of variables is the result of function.

52

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

The integrated development environment (IDE) Code :: Blocks can be used to

perform home tasks, laboratory work. Code :: Blocks it is a free software (download

from http://www.codeblocks.org/)

Figure 1. http://www.codeblocks.org/

You must to select downloads -> binary release (fig.2)-> operation system

Figure 2. Select operation system

http://www.codeblocks.org/
http://www.codeblocks.org/

53

Select program with “ mingw”(fig.3)

Figure 3. Select type of Code::Blocks

The first launch of Code::Blocks IDE

After running the Code::Blocks IDE, a splash screen will appear showing its

version as it loads.

Figure 4. Code::Blocks screensaver

After that, a dialog box will appear with a list of found compilers; from it you

need to choose the one that will be used by default. To perform practical work, you

need to select the default GNU GCC Compiler and click OK.

In fig. 5 shows the dialog box for install folder.

54

Figure. 5. Dialog box

After installing, you will be transferred to the main window of the program (see

Fig. 6).

Figure 6. The main Code::Blocks IDE window

55

Creating a project in Code::Blocks

Create a new project starts the project creation wizard.

Open an existing project opens the Open file dialog box, in which you can open a

file of an existing project. The Open file dialog box can be called with the Ctrl+O keys.

File->New->Project... menu item – creation of a new project (or the Create a new

project item in the "Quick Start" window) (fig.7).

Figure 7. Create new project

In the New from template dialog box that appears, you need to specify the project

template. To perform laboratory work, you can select Console application (see Fig. 8),

press GO, after which the wizard for creating console applications will appear.

Figure 8. New from template project template selection dialog box

56

Click on “Concole application” and press “Go”

If you check the Skip this page next time check box in the dialog box of the wizard

(see Fig. 9), this page of the wizard will be skipped when creating a new project.

Figure 9. Dialog window of the wizard

Сhoose the C language and press “Next”

In the Project title field (Fig. 10) you need to specify the name of the project, in

the Folder to create project in field - the folder where it will be saved.

 Optional fields Project filename - specify the name of the project file, Resulting

filename - specify the final name of the directory and project.

57

Fig. 10. Wizard page for specifying the name of the project and the folder where it

will be saved

Figure 10a. Example the page with the name of the project and the folder where it

will be saved

58

On the page (see Fig. 11), you need to choose the compiler that will be used when

compiling the application.

Build scripts help you get multiple versions of the same application:

- Debug – compilation script, used when debugging the application;

- Release – script for compiling the finished application.

If there is no need to create a certain script, then you need to remove the

corresponding check mark.

Figure 11. Wizard page for selecting a compiler

59

Figure 11a. Wizard page for selecting build script

In each scenario, it is possible to specify the directories where the files of the

compiled application will be placed:

- Output dir – for all files;

- Objects output dir - for object files.

After clicking Finish, the project will be created and opened.

60

Figure 12. The main Code::Blocks IDE window

In the code editor window (Fig. 12) there is a Management panel on the left, where

the hierarchical structure of the project is displayed in the form of a tree, consisting of

one main.cpp file, which is located inside the virtual directory Sources. The Sources

directory is inside the created project. The project belongs to the Workspace workspace

and is named the name given to it when it was created. Double-clicking on the main.cpp

file will cause it to open in the main window.

To close the file, you can click the corresponding icon next to the file name, or

use the Ctrl+W keys.

To switch between open files, you can use the Ctrl+Tab keys, or click on their

titles with the mouse.

If the file has been changed, an asterisk appears on its tab to the left of the file

name. To save the file, press Ctrl+S or select the Save button in the toolbar.

Through the View menu (Fig. 13), you can control the appearance of the

Code::Blocks IC. To display or hide toolbars, you need to go to the menu View-

>Toolbars and check the corresponding panels

61

Figure 13. View menu

• Main – the main toolbar, on which the main actions for working with projects

are displayed (Fig. 14);

Figure 14: Main panel

• Code completion – a panel for viewing code objects (Fig. 15);

Figure 15: Code completion panel

• Compiler – a panel with buttons for controlling application compilation (Fig.

16);

Figure 16: Compiler panel

• Debugger – a panel with buttons for controlling application debugging (Fig. 17).

Figure 17: Debugger panel

The View->Messages menu item or the F2 key will show or hide the Messages

compiler message window at the bottom of the screen.

62

Encoding setting

UTF-8 encoding must be set for normal operation (see status bar). If a different

encoding is installed, then it must be changed and after the change, reopen all open

files.

To configure the Code::Blocks encoding, you need to select the Settings-

>Editor... menu item, after which the Configure editor window of the code text editor

settings will open (Fig. 18).

Figure 18. Configure editor code text editor settings window

In the Default encoding when opening files drop-down list, you need to select

UTF-8 encoding, click OK and reopen all open files in ISR.

63

Work with several open projects

With several projects open at the same time, the active project is highlighted in

bold, and regardless of which file is currently open in the main window, the active

project will be compiled.

To switch projects, hover the mouse over the project you want to make active and

press the right mouse button. In the drop-down menu (Fig. 19), select Activate project.

To close this project, select the Close project menu item.

Figure 19. Project menu

Compilation and assembly of the project

To assemble the project, compile and run the application, press F9 or the Build-

>Build and run menu item.

• Build – assembly of the entire application

• Complete current file – compilation of the currently open file

• Run – launch of an already compiled application

64

• Build and run – collect and run

• Rebuild - reassemble

• Clean – clean the project from compiled and temporary files.

If you only need to compile the project without starting it, you need to select the

Build menu item or press Ctrl+F9.

When creating the project, it was necessary to define the application assembly

scenarios. Two build scenarios, Debug or Release, also allow you to get two

independent versions of the program with different build options, and accordingly, with

different options for optimizing the application. In order to use them, you need to select

the appropriate build script. This can be done in the Compiler toolbar (Fig. 16), where

you can specify one of two scenarios in the Build target drop-down list. You can change

the compilation options for each of the scenarios in the Project build options window

(Fig. 20) by selecting the appropriate Debug or Release scenario.

Figure 20. "Project build options" compilation settings window

65

GCC compiler options

In some cases, additional setting of compiler options is required. These settings

are made for a specific project in the Project build options window (Fig. 20), which

can be called from the project menu by selecting the Build options... item (Fig. 19).

Globally, these settings are set for the entire program in the Compiler and debugger

settings window (Fig. 21).

Figure 21. Compiler and debugger settings window

If the program is not compiled and the message "cc1plus.exe: error: unrecognized

command line option „- Wfatal-errors‟" appears in the Messages panel in the Build log

tab, you need to go to the menu item Settings -> Compiler and debugger... and in the

window that opened, provided that the GNU GCC Compiler is selected, in the

66

corresponding drop-down list of Selected compiler, on the Compiler Flags tab, you

need to uncheck the item "Stop compiling after first error [-Wfatal- errors]".

If the Messages panel is not visible at the bottom of the screen, press F2 to open

it.

Debugging the project

The program uses the Gdb debugger, which you must install, to find runtime

errors. To work with this debugger, use the Debug menu. To start the debugger, you

need to select the Debug->Start menu item, after which the debugger will start, and if

you do not specify a breakpoint, it will run the entire application step by step. To view

the contents of variables, breakpoints must be specified. A breakpoint is set either by

clicking the left mouse button on the gray separator bar next to the line number, or by

placing the cursor on the line where you want to stop.

To view the contents of variables and arrays, the Watches panel (window) is used

(Fig. 22).

Figure 22. Watch panel

In order to add variables to this window, you need to click on the Watches window

with the right mouse button, after which you need to select the Add watch item in the

drop-down menu.

The Edit watch dialog box will open, where you need to enter the name of the

variable in the Keyword field and click the OK button. To view the array, you need to

mark the Watch as array marker.

67

CREATION AND ADJUSTMENT NEW PROGRAMS

1. Open a new editor window to enter a new program.

2. Type the text of the new program.

3. It is imperative to write the program text to disk before starting the program for

execution for the first time, because the program text may be lost due to errors in the

program or a computer failure.

4. Start the program for execution.

5. If syntax errors were made in the program, a corresponding message will appear

on the screen, and the cursor will show the location of the error.

6. View the program execution results.

7. If incorrect results are obtained, then you need to correct algorithmic errors and

run the program again for execution.

8. Repeat points 4-7 until correct results are obtained.

9. Save the debugged program on disk.

68

TASKS

TASK 1. The simplest operators of the C programming language

Formulation of the problem

Develop a program that calculates and outputs the values of t_1 and t_2 according

to formulas that correspond to the variant of the individual task (see below). Determine

the areas of valid values of formula parameters and specify arbitrary values from these

areas.

Parameters named a and b are integers (type int), and other parameters are floating

points (float type).

The values of the parameters with the names x and y must be entered from the

keyboard, and the values of the rest must be set as the initial values of the corresponding

variables.

Content of the report

1. Statement of the task, a specific version of the task.

2. Text of the program.

3. Tests for debugging the program and the results obtained for them.

4. Calculation results for arbitrary input data.

Variants of tasks

Variant Task

1.

𝑡𝑡1 =
1
𝑏𝑏3 (𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑥𝑥
𝑦𝑦�

 +
𝑏𝑏3

𝑥𝑥 ∙ 𝑡𝑡𝑡𝑡 �
2
𝑎𝑎𝑎𝑎�

)

𝑡𝑡2 =
2
𝑎𝑎2 ∙ 𝑡𝑡𝑡𝑡

(𝑎𝑎𝑎𝑎) − ��
𝑥𝑥2

𝑎𝑎 −
2
𝑎𝑎2� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑏𝑏𝑏𝑏)

2.
𝑡𝑡1 =

𝑥𝑥𝑥𝑥
𝑦𝑦 +

𝑏𝑏
𝑦𝑦2 ∙𝑙𝑙𝑙𝑙𝑙𝑙

(𝑎𝑎𝑎𝑎 + 𝑦𝑦)

𝑡𝑡2 =
1

2𝑎𝑎𝑎𝑎 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 √2𝑎𝑎𝑎𝑎 − 𝑥𝑥) −
1

2𝑑𝑑𝑑𝑑)

69

3.
𝑡𝑡1 =

1
𝑏𝑏 (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑎𝑎𝑎𝑎
2)−

1
𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏𝑏𝑏))

𝑡𝑡2 =
1
𝑎𝑎 ∙

1
(𝑛𝑛 − 1)𝑥𝑥2 −

𝑏𝑏
(𝑛𝑛 − 2)𝑥𝑥𝑛𝑛−2

4.

𝑡𝑡1 =
1
𝑐𝑐 (

1
𝑎𝑎𝑎𝑎 + 𝑏𝑏 +

𝑦𝑦
𝑑𝑑 ∙𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑦𝑦𝑦𝑦 + 𝑏𝑏
𝑎𝑎𝑎𝑎 + 𝑑𝑑�

)

𝑡𝑡2 =
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑏𝑏𝑏𝑏)

2𝑎𝑎 +
𝑥𝑥√𝑐𝑐2 + 𝑏𝑏2

2𝑦𝑦√𝑐𝑐2 − 𝑏𝑏2

5.
𝑡𝑡1 =

𝑏𝑏
(√𝑎𝑎 − 𝑏𝑏) ∙ (𝑏𝑏 + 𝑥𝑥)

−
𝑥𝑥

(𝑎𝑎 − 𝑏𝑏)2 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑎𝑎 + 𝑥𝑥)

𝑡𝑡2 =
1
𝑎𝑎 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎)) −

1
2𝑥𝑥)

6.
𝑡𝑡1 =

1
(𝑎𝑎 − 𝑏𝑏)2 ∙ �

1
𝑎𝑎 + 𝑥𝑥 −

1
(1 − 𝑥𝑥)2�

+
2

(𝑎𝑎 − 𝑦𝑦)3 ∙ 𝑥𝑥

𝑡𝑡2 =
𝑏𝑏

2𝑎𝑎 ∙
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎)
𝑐𝑐𝑐𝑐𝑐𝑐2(𝑎𝑎𝑎𝑎) +

2𝑎𝑎
𝑏𝑏 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)

7.
𝑡𝑡1 =

1
2𝑎𝑎2 ∙ (�

𝑦𝑦√𝑐𝑐2 + 𝑏𝑏2

𝑥𝑥√𝑐𝑐2 − 𝑏𝑏2
� + �𝑦𝑦 − 𝑥𝑥)

𝑡𝑡2 =
2𝑥𝑥
𝑏𝑏2 (𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎)− 0.5) −

1
2𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(�

𝑎𝑎𝑎𝑎
2 �)

8.
𝑡𝑡1 =

1
𝑎𝑎2 (𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥) −

𝑏𝑏2

2𝑥𝑥 +
2𝑏𝑏
𝑥𝑥2)

𝑡𝑡2 =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)

2𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎) +
1

2𝑎𝑎 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡 �
𝑎𝑎𝑎𝑎
2 �)

9.
𝑡𝑡1 =

1
𝑎𝑎4 (

𝑦𝑦3

3 − 3𝑏𝑏𝑏𝑏 + 3𝑑𝑑 ∙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥) +
𝑏𝑏3

𝑥𝑥)

𝑡𝑡2 =
1

1 − 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑎𝑎𝑎𝑎) +
1
𝑎𝑎 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(�

𝑎𝑎𝑎𝑎
2 �)

10.
𝑡𝑡1 =

1
𝑏𝑏2 + 1 (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑦𝑦
𝑥𝑥) +

𝑎𝑎𝑎𝑎
2𝑦𝑦)

𝑡𝑡2 = −
𝑥𝑥

2𝑎𝑎 ∙
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎) +

2
𝑎𝑎2 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑎𝑎𝑎𝑎
2 �)

70

11.
𝑡𝑡1 =

𝑎𝑎𝑎𝑎
𝑦𝑦 +

𝑏𝑏
𝑦𝑦2 ∙𝑙𝑙𝑙𝑙𝑙𝑙

(𝑦𝑦𝑦𝑦 + 𝑑𝑑))

𝑡𝑡2 =
−1

𝑎𝑎(𝑛𝑛 − 2) ∙
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛 − 1) ∙ 𝑏𝑏𝑏𝑏)

12.
𝑡𝑡1 =

1
2𝑎𝑎2 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑦𝑦√𝑐𝑐2 + 𝑏𝑏2

𝑥𝑥√𝑐𝑐2 − 𝑏𝑏2
� + 1)

𝑡𝑡2 =
1
𝑎𝑎 ∙ 𝑡𝑡𝑡𝑡 ��

𝑎𝑎𝑎𝑎
2 �� +

1
𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑎𝑎𝑎𝑎
2) ∙ �𝑏𝑏2 − 1

13.

𝑡𝑡1 =
1
𝑐𝑐 (

1
𝑎𝑎𝑎𝑎 + 𝑏𝑏 +

𝑦𝑦
𝑐𝑐 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑦𝑦𝑦𝑦 + 𝑑𝑑
𝑎𝑎𝑎𝑎 + 𝑏𝑏�

)

𝑡𝑡2 =
1
𝑎𝑎 ∙ 𝑡𝑡𝑡𝑡 ��

𝑎𝑎𝑎𝑎
2 �� +

1
2 𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑎𝑎𝑎𝑎 − 1
2)

14.
𝑡𝑡1 =

𝑏𝑏
(𝑎𝑎 − 𝑏𝑏) ∙ (𝑏𝑏 − 𝑥𝑥) −

2
(𝑎𝑎 − 𝑏𝑏)3 ∙𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑎𝑎 + 𝑥𝑥
𝑏𝑏 + 𝑥𝑥�

𝑡𝑡2 =
1

2𝑎𝑎 ∙ (
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)
𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎) − 𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑎𝑎𝑎𝑎 + 1
2)

15.
𝑡𝑡1 =

−1
(𝑎𝑎 − 𝑏𝑏)2 ∙ �

1
𝑎𝑎 + 𝑥𝑥 +

1
1 + 𝑥𝑥�

+
2

(𝑎𝑎 − 𝑏𝑏)3 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑦𝑦
𝑎𝑎�

𝑡𝑡2 =
1

1 − 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎) + (
1
𝑎𝑎 ∙ 𝑡𝑡𝑡𝑡 (�

𝑎𝑎𝑎𝑎
2 �)

16.
𝑡𝑡1 =

1
𝑏𝑏2 (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑦𝑦
3𝑥𝑥) +

𝑎𝑎𝑎𝑎
𝑦𝑦)

𝑡𝑡2 =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)

2𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎) +
1

2𝑎𝑎 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 (
𝑏𝑏𝑏𝑏
2)

17.

𝑡𝑡1 =
1
𝑐𝑐 (
𝑏𝑏
𝑎𝑎 ∙𝑙𝑙𝑙𝑙𝑙𝑙

(𝑎𝑎𝑎𝑎 + 𝑏𝑏) +
𝑑𝑑
𝑦𝑦 ∙𝑙𝑙𝑙𝑙𝑙𝑙

(𝑦𝑦𝑦𝑦 + 𝑑𝑑))

𝑡𝑡2 =
1

2𝑎𝑎𝑎𝑎 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 (
𝑥𝑥√𝑐𝑐2 − 𝑏𝑏2

2𝑦𝑦√𝑐𝑐2 + 𝑏𝑏2
))

71

18.

𝑡𝑡1 =
1
𝑏𝑏3 (𝑙𝑙𝑙𝑙𝑙𝑙

𝑦𝑦
𝑥𝑥 −

𝑎𝑎3𝑥𝑥2

2𝑦𝑦2)

𝑡𝑡2 =
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎)

2𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥) +
1

2𝑎𝑎 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 (
𝑎𝑎𝑎𝑎
2)

19.
𝑡𝑡1 =

1
𝑎𝑎 (

−1
(𝑛𝑛 − 2)𝑥𝑥2 +

𝑏𝑏
(𝑛𝑛 − 1)𝑥𝑥𝑛𝑛−2)

𝑡𝑡2 =
1
𝑎𝑎 (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑎𝑎𝑎𝑎
2)−

1
𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎))

20.
𝑡𝑡1 =

1
𝑎𝑎4 (

𝑥𝑥3

3 − 3𝑏𝑏𝑏𝑏 + 3𝑏𝑏2 ∙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥) +
𝑏𝑏3

𝑥𝑥)

𝑡𝑡2 =
2𝑥𝑥
𝑎𝑎2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠

(𝑎𝑎𝑎𝑎) − �
𝑥𝑥2

𝑎𝑎 −
2
𝑎𝑎2� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎)

21.

𝑡𝑡1 =
𝑎𝑎𝑎𝑎𝑎𝑎

3 +
𝑑𝑑
𝑥𝑥 ∙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑎𝑎𝑎𝑎 + 𝑦𝑦)

𝑡𝑡2 =
1
2 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 (

𝑦𝑦
𝑥𝑥))−

𝑎𝑎𝑎𝑎
2𝑦𝑦)

22.
𝑡𝑡1 =

1
3𝑎𝑎 (𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑦𝑦𝑦𝑦
2 � +

1
𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏))

𝑡𝑡2 =
𝑏𝑏
𝑎𝑎 ∙ (

𝑥𝑥2

(𝑑𝑑 − 1) −
𝑦𝑦2

(𝑏𝑏 − 2𝑎𝑎))

23.
𝑡𝑡1 =

𝑏𝑏𝑏𝑏
(√𝑎𝑎 − 𝑏𝑏) ∙ (√𝑏𝑏 + 𝑎𝑎)

+
𝑦𝑦

(𝑥𝑥 − 𝑏𝑏)2 ∙ (𝑎𝑎 + 𝑥𝑥)

𝑡𝑡2 =
1
𝑎𝑎𝑎𝑎 ∙ (tg �

𝑏𝑏𝑏𝑏
2 �

− log �
5
𝑥𝑥�)

24.

𝑡𝑡1 =
1

3𝑑𝑑 (
1

𝑎𝑎𝑎𝑎 + 𝑏𝑏 +
𝑑𝑑
𝑥𝑥 ∙𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑎𝑎𝑎𝑎 − 𝑑𝑑�

)

𝑡𝑡2 =
�𝑦𝑦𝑏𝑏
2𝑎𝑎 +

𝑥𝑥√𝑐𝑐2 + 𝑏𝑏2

2𝑦𝑦√𝑐𝑐2 − 𝑏𝑏2

72

25.
𝑡𝑡1 =

1
𝑎𝑎𝑎𝑎 ∙ (�

√𝑐𝑐2 − 𝑏𝑏2

√𝑐𝑐2 + 𝑏𝑏2
� + 𝑑𝑑�𝑦𝑦 + 𝑥𝑥)

𝑡𝑡2 =
2
𝑥𝑥 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎) −

𝑦𝑦
2𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(�

𝑎𝑎𝑎𝑎
2 �)

26.

𝑡𝑡1 =
𝑥𝑥𝑥𝑥
4𝑦𝑦 +

𝑏𝑏
2𝑦𝑦2 +

𝑥𝑥
𝑦𝑦4 ∙ �𝑑𝑑𝑑𝑑

𝑡𝑡2 =
𝑥𝑥

2𝑎𝑎𝑎𝑎 ∙ (𝑙𝑙𝑙𝑙𝑙𝑙 �𝑦𝑦𝑦𝑦𝑦𝑦 − 1) −
1

2𝑎𝑎𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑏𝑏𝑏𝑏)

27.
𝑡𝑡1 =

1
𝑐𝑐 (

1
𝑎𝑎𝑎𝑎 + 𝑏𝑏 +

1
(𝑎𝑎𝑎𝑎 + 𝑏𝑏)2 ∙𝑐𝑐𝑐𝑐𝑐𝑐

(𝑦𝑦𝑦𝑦 + 𝑑𝑑))

𝑡𝑡2 =
𝑎𝑎
𝑏𝑏 ∙ 𝑡𝑡𝑡𝑡

(𝑎𝑎𝑎𝑎) +
1
2 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑏𝑏𝑏𝑏 + 1)

28.
𝑡𝑡1 =

𝑥𝑥
𝑎𝑎2 (�𝑑𝑑𝑑𝑑 −

𝑏𝑏2

2𝑥𝑥 +
2𝑏𝑏
𝑥𝑥2)

𝑡𝑡2 =
 𝑐𝑐𝑐𝑐𝑐𝑐2(𝑎𝑎𝑎𝑎)
𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎) +

1
2𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐

2(𝑎𝑎𝑎𝑎) + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑎𝑎))

29.
𝑡𝑡1 = (

𝑏𝑏2

𝑦𝑦 +
2𝑏𝑏
𝑦𝑦 +

1
𝑦𝑦) ∙ (

𝑦𝑦
(𝑏𝑏 − 1)2)

𝑡𝑡2 =
1

2𝑎𝑎𝑎𝑎 ∙ (�2𝑎𝑎𝑎𝑎 + 𝑏𝑏2) −
𝑦𝑦

2𝑑𝑑𝑑𝑑

30.

𝑡𝑡1 =
1
𝑎𝑎2 (

𝑥𝑥2

3 + 3𝑏𝑏𝑏𝑏 + 3𝑏𝑏2 −
𝑏𝑏3

𝑥𝑥)

𝑡𝑡2 =
2𝑦𝑦
𝑎𝑎2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠

(𝑏𝑏𝑏𝑏) − �
𝑥𝑥2

𝑎𝑎 �
∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑏𝑏𝑏𝑏)

Instructions for completing the Task 1

Library <math.h>

• sqrt (x) - finding the root of the number x

• tan (x) is the tangent of x

• sin (x) is the sine of the number x

• cos (x) is the cosine of the number x

73

• log (x) is the logarithm of the number x

• abs (x) is the modulus of the number x

• pow (x, y) - raising the number x to the power of y

Example. Calculate by formula

Mathematics expression

Expression with language C

t1=1/a*(x2+2)(5y-log(x))

t1=1/a*(x*x+2)*(5*y-log(x))

or

t1=1/a*(pow(x,2)+2)*(5*y-log(x))

Text of program1

#include <stdio.h>

#include <math.h>

int main()

{int a=2;

float x,y,t1;

printf("\nInput x=");

scanf("%f",&x);

printf("Input y=");

scanf("%f",&y);

t1=1/a*(x*x+2)*(5*y-log(x));

printf("%f",t1);

return 0;

}

74

The result of this program1

It is not correct result.

 We must to change line t1=1/a*(x*x+2)*(5*y-log(x)); and write correct program.

Text of new program2

#include <stdio.h>

#include <math.h>

int main()

{int a=2;

float x,y,t1;

printf("\nInput x=");

scanf("%f",&x);

printf("Input y=");

scanf("%f",&y);

t1=1.0/a*(x*x+2)*(5*y-log(x));

printf("%f",t1);

return 0;

}

Result of new program2

75

Text of new program3

#include <stdio.h>

#include <math.h>

int main()

{int a=2;

float x,y,t1;

printf("\nInput x=");

scanf("%f",&x);

printf("Input y=");

scanf("%f",&y);

t1=(float)1/a*(pow(x,2)+2)*(5*y-log(x));

printf("%f",t1);

return 0;

}

Result of new program3

76

TASK 2. Calculate the function

Formulation of the problem

1. Write a program using the if / else structure without using logical operations

2. Write a program using logical operations

3. Compare the results

Variant Task

1. 𝑦𝑦 = �
𝑥𝑥2 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−1)
2
5 𝑥𝑥

3 + 12𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 2)

2. 𝑦𝑦 = �
𝑥𝑥 + 9, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [20;∞)
𝑥𝑥2 − 5𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [5; 15)

3. 𝑦𝑦 = �

2
7 𝑥𝑥

3 − 7, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−7)

1
7 𝑥𝑥

2 + 2𝑥𝑥 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−7; 0)

4. 𝑦𝑦 = �2𝑥𝑥
3 − 𝑥𝑥2 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5;−2)
𝑥𝑥 + 10, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (12;∞]

5. 𝑦𝑦 = �
𝑥𝑥 − 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−5)
9𝑥𝑥4 + 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 20)

6. 𝑦𝑦 = �
𝑥𝑥2 + 8, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−4;−1)
𝑥𝑥2 + 10𝑥𝑥 − 256, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (10;∞]

7. 𝑦𝑦 = �
𝑥𝑥2 − 𝑥𝑥 + 17, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 17)
1
5 𝑥𝑥 + 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [20; 25)

8. 𝑦𝑦 = �
𝑥𝑥2 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−7)

2
3 𝑥𝑥

3 + 12𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (6; 12]

9. 𝑦𝑦 = � 𝑥𝑥
4 − 𝑥𝑥2 + 25, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5; 0)

−56 + 25𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−∞;−12)

77

10. 𝑦𝑦 = �
4𝑥𝑥2 − 15, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−3;−1)
1
9 𝑥𝑥

3 − 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 3)

11. 𝑦𝑦 = �
𝑥𝑥3 − 8, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 15)

𝑥𝑥2 + 𝑥𝑥 − 13, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−10;−2)

12. 𝑦𝑦 = �
19𝑥𝑥 + 7, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (0; 7)

𝑥𝑥3 −
1
3 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−12;−5]

13. 𝑦𝑦 = �
𝑥𝑥2 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−1)
𝑥𝑥4 − 𝑥𝑥2 + 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (1;∞)

14. 𝑦𝑦 = �𝑥𝑥
2 − 7, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 1]
𝑥𝑥 + 10, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (1;∞)

15. 𝑦𝑦 = �
4𝑥𝑥2 − 15, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−10;−8)
1
5 𝑥𝑥

3 − 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−5; 5)

16. 𝑦𝑦 = �𝑥𝑥
5 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−1)

3𝑥𝑥3 + 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 9)

17. 𝑦𝑦 = �
𝑥𝑥2 − 27, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−1; 3]
3
5 𝑥𝑥

2 + 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [10; 15)

18. 𝑦𝑦 = �5𝑥𝑥
3 + 2𝑥𝑥2 + 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−3)
𝑥𝑥 + 10 , 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−1; 5]

19. 𝑦𝑦 = �2𝑥𝑥
3 − 𝑥𝑥2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−25;−20)

5𝑥𝑥 + 10, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−20; 20]

20. 𝑦𝑦 = �
10𝑥𝑥 − 6, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−15; 0]

𝑥𝑥3 −
1
3 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (0; 3)

21. 𝑦𝑦 = �
𝑥𝑥3 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (5; +∞)
𝑥𝑥2 + 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5; 0)

22. 𝑦𝑦 = �
2𝑥𝑥2 − 16, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−4; 4)
1
9 𝑥𝑥

2 − 𝑥𝑥 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [10; 20)

78

23. 𝑦𝑦 = �
1
5 𝑥𝑥

2 + 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [5; 10)

𝑥𝑥3 − 9, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 2)

24. 𝑦𝑦 = � 𝑥𝑥
4 − 𝑥𝑥2 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−2; 0)

−5 + 25𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−12)

25. 𝑦𝑦 = �
𝑥𝑥 + 2.5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−10;−2)
2𝑥𝑥4 + 𝑥𝑥 + 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [0; 3)

26. 𝑦𝑦 = �2𝑥𝑥
2 − 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−5)

𝑥𝑥2 + 10, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (5;∞)

27. 𝑦𝑦 = �
2𝑥𝑥2 − 0.5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−1; 1)
1
5 𝑥𝑥

2 − 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [10; 20)

28. 𝑦𝑦 = �2𝑥𝑥 − 𝑥𝑥2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5;−2)
5𝑥𝑥 − 10, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−1; 1]

29. 𝑦𝑦 = �
3𝑥𝑥 − 2/3, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−3; 3)

2𝑥𝑥 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [5; 10]

30. 𝑦𝑦 = �
2𝑥𝑥2 − 6.5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [−3; 4)
1
8 𝑥𝑥

2 − 1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ [8; 16)

79

Instructions for completing the Task 2

Example 1. Calculate function (without logical operations)

𝑦𝑦 = � 𝑥𝑥
2 − 2, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5; 0]

𝑥𝑥 + 7, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−∞;−1) ∪ [1; 5)

#include <stdio.h>

int main()

{

float x,y;

printf("\nInput x=");

scanf("%f",&x);

if (x<-10) printf("y=%f",x+7);

else if(x<=-5) printf("function does not exist");

 else if(x<=0) printf("y=%f",x*x-2);

 else if(x<1) printf("function does not exist");

 else if(x<5) {y=x+7;

 printf("y=%f",y);

 }

 else printf("function does not exist");

getch();

return 0;

}

80

81

Example 2. Calculate function (without logical operations)

𝑦𝑦 = �
𝑥𝑥2 − 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5; 0] ∪ (5; 10)
2
3 𝑥𝑥 − 𝑥𝑥3, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (0; 5] ∪ [10; 15)

#include <stdio.h>

int main()

{

 float x;

 printf("Enter x\n");

 scanf("%f",&x);

 if (x<=-5) printf("error\n");

 else

 if (x>15) printf("error\n");

if (x>-5)

 if (x<=0) printf("y=%.5f\n",x*x-5);

 if (x>5)

 if (x<10) printf("y=%.5f\n",x*x-5);

 if (x>0)

 if (x<=5) printf("y=%f\n",2.0/3.0*x-x*x*x);

 else if (x>=10)

 if (x<15) printf("y=%f\n",2.0/3.0*x-x*x*x);

return 0;

}

82

Example 3. Calculate function (with logical operations)

𝑦𝑦 = �
𝑥𝑥2 − 5, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (−5; 0] ∪ (5; 10)
2
3 𝑥𝑥 − 𝑥𝑥3, 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ (0; 5] ∪ [10; 15)

#include <stdio.h>

int main()

{

 float x;

 printf("Enter x\n");

 scanf("%f",&x);

if ((x<=-5)||(x>=15)) printf("error!!!\n");

 if (((x>-5)&&(x<=0))||((x>5)&&(x<10)))

 printf("y==%.5f\n",x*x-5);

 if (((x>0)&&(x<=5))||((x>=10)&&(x<15)))

 printf("y==%f\n",2.0/3.0*x-x*x*x);

return 0;

}

83

Сonclusions: results are equal.

84

TASK 3. Develop a program using the operator switch

1. Develop a program that allows you to enter a letter of the English alphabet (the

first 10 letters) and display which letter is a vowel or consonant.

2. Develop a program that allows you to enter the month number, and the entered

number to determine what time of year it is (winter, spring, summer, autumn).

3. Develop a program that allows you to enter the number of the day of the week,

and determine the name of the day of the week by the entered number.

4. Develop a program that allows you to enter the number of the month, and the

number entered to determine the number of days in this month (for non-leap

year).

5. In some educational institution it was decided to evaluate the quality of students'

work on the following scale: "2" - unsatisfactory; "3" - satisfactory; "4" - good;

"5" - excellent, less than 2 - "very, very bad". Develop a program that allows you

to enter a score on the scale and display the appropriate message.

6. Develop a program that allows you to enter an integer from 1 to 10. Depending

on the number entered, you need to output a certain number of rows with stars.

The number of stars is equal to the line number (in the first line - 1, in the second

- 2, etc.).

7. Develop a program that allows you to enter a symbol and display whether the

symbol is a number. Use the character code table.

8. Develop a program that displays the following menu: 1 - red, 2 - blue, 3 - white,

4 - yellow, 5 - green, 6 - orange, 7 - white, 8 - black. After selecting the menu

number, the program should display the color name.

9. Develop a program that allows you to enter a letter of the English alphabet (the

last 10 letters) and display which letter is a vowel or consonant.

10. The user enters an integer in the range of 1 to 7, which determines the number

of learning tasks on a topic. Print a line with the specified number of tasks and

the same number of exclamation marks.

85

11. The user enters some integer in the range of 10-20. Display the string - the name

of this number on the screen

12. Print the name of the rainbow color depending on the selected number (1- red, 2

orange, 3-yellow, 4-green, 5- light blue, 6-blue, 7-purple)

13. Ticket price for 1 segments of travel – 10,50 UAH. Create a program that shows

the total fare to station A (3 segments), B (5 segments), C (7 segments), B (8

segments).

14. Depending on the number of the chosen specialty display its name: 121 -

Software Engineering, 122 - Computer Science and Information Technology,

123 - Computer Engineering, 124 - Systems Analysis, 125 - Cybersecurity, 126

- Information Systems and Technologies

15. Ticket price for 1 person – 119,2 UAH 20 . The user enters the number of

passengers and receives the cost of tickets. (Number of people from 1 to 10)

16. Units of length are numbered as follows: 1 - decimeter, 2 - kilometer, 3 - meter,

4 - millimeter, 5 - centimeter. The user specifies the number of the unit of length

(integer in the range [1… 5] and the length of the segment in these units (real

number). Find the length of the segment in meters.

17. Units of mass are numbered as follows: 1 - kilogram, 2 - milligram, 3 - gram, 4

- ton, 5 - quintal. The user specifies the unit number of the mass [integer in the

range [1… 5] and the body weight in these units (real number) .Find the body

weight in kilograms.

18. The user enters the radius value. The program allows you to count the elements:

1 - diameter, 2 - the length of the circle L = 2 • π • R, 3 - the area of the circle S

= π • R2. Use 3.14 as the value of π.

19. The user enters an integer in the range [1… 12] and receives the corresponding

number in English

20. The year is divided into 4 quarters. Depending on the quarter number, display

the names of the months included in it.

21. The user enters 2 values of the legs of a right triangle (a, b). The hypotenuse is

calculated by the Pythagorean theorem. Calculate the values of 1-sine (sin = a /

86

c), 2-cosine (cos = b / c), 3-tangent (tg = a / b), 4 - cotangent (ctg = b / a)) of

this triangle.

22. Develop a program that allows you to enter a letter of the English alphabet (the

first 10 letters) and display which letter is a vowel or consonant.

23. Develop a program that allows you to enter the month number, and the entered

number to determine what time of year it is (winter, spring, summer, autumn).

24. Develop a program that allows you to enter the number of the day of the week,

and determine the name of the day of the week by the entered number.

25. Develop a program that allows you to enter the number of the month, and the

number entered to determine the number of days in this month (for non-leap

year).

26. The user enters an integer in the range [101… 110] and receives the

corresponding number in English

27. The year is divided into 4 quarters. Depending on the quarter number, display

the names of the months included in it.

28. The user enters 2 values of the legs of a right triangle (a, b). The hypotenuse is

calculated by the Pythagorean theorem. Calculate the values of 1-sine (sin = a /

c), 2-cosine (cos = b / c), 3-tangent (tg = a / b), 4 - cotangent (ctg = b / a)) of

this triangle.

29. Develop a program that allows you to enter an integer from 2 to 12 with step

2(2,4,6,8,10,12). Depending on the number entered, you need to output a certain

number of rows with stars. The number of stars is equal to the line number (in

the first line - 2, in the second - 4, etc.).

Instructions for completing the Task 3

87

Example. Enter integer number from keyboard from 1 to 4 and output this

number as word

#include <stdio.h>

int main()

{

int input;

printf("Enter number from 1 to 4\n");

 scanf("%d", &input);

 switch (input) {

 case 1:

 printf("First\n");

 break;

 case 2:

 printf("Second\n");

 break;

 case 3:

 printf("Third\n");

 break;

 case 4:

 printf("Fourth\n");

 break;

 default:

 printf("ERROR\n");

 }

return 0;

}

88

Results

89

90

Task 4. Calculation of the sum

According to the individual variant to make the program for calculation of the

sum of an infinite series, summing up members of a series which values on the module

exceed the set accuracy s = 10 -4=0.0001. Determine the number of terms. Perform the

calculation for x (-2 <x <2)

№ Функція № Функція

1
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

(2𝑘𝑘 + 1)!

∞

𝑘𝑘=1

16
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

2𝑘𝑘(2𝑘𝑘 − 1)!

∞

𝑘𝑘=1

2
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥2𝑘𝑘

(𝑘𝑘)! 2𝑘𝑘−1

∞

𝑘𝑘=1

17
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥𝑘𝑘

(𝑘𝑘 + 4)!

∞

𝑘𝑘=1

3
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥𝑘𝑘

(𝑘𝑘)!

∞

𝑘𝑘=1

18
𝑓𝑓(𝑥𝑥) = �

 (−1)𝑘𝑘𝑥𝑥3𝑘𝑘−1

 𝑘𝑘2(𝑘𝑘 + 1)!

∞

𝑘𝑘=1

4
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

𝑘𝑘(2𝑘𝑘 + 1)!

∞

𝑘𝑘=1

19
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥2𝑘𝑘

2𝑘𝑘(𝑘𝑘)!

∞

𝑘𝑘=1

5
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘−1

𝑘𝑘(𝑘𝑘 + 3)!

∞

𝑘𝑘=1

20
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥3𝑘𝑘−1

2𝑘𝑘(𝑘𝑘 + 3)!

∞

𝑘𝑘=1

6
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

2𝑘𝑘(𝑘𝑘 + 1)!

∞

𝑘𝑘=1

21
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥𝑘𝑘+2

𝑘𝑘(2𝑘𝑘 + 1)!

∞

𝑘𝑘=1

7
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥2𝑘𝑘

(2𝑘𝑘 − 1)!

∞

𝑘𝑘=1

22
𝑓𝑓(𝑥𝑥) = �

(−1)2𝑘𝑘−1𝑥𝑥2𝑘𝑘+1

𝑘𝑘(2𝑘𝑘)!

∞

𝑘𝑘=1

91

8
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥3𝑘𝑘−1

(2𝑘𝑘)!

∞

𝑘𝑘=1

23
𝑓𝑓(𝑥𝑥) = �

(−1)3𝑘𝑘𝑥𝑥2𝑘𝑘−1

22(𝑘𝑘−1)(𝑘𝑘 + 1)!

∞

𝑘𝑘=1

9
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥𝑘𝑘+3

(𝑘𝑘 + 2)!𝑘𝑘2

∞

𝑘𝑘=1

24
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥𝑘𝑘−1

(𝑘𝑘 + 1)(𝑘𝑘 + 3)!

∞

𝑘𝑘=1

10
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥2𝑘𝑘

(2𝑘𝑘 + 1)!

∞

𝑘𝑘=1

25
𝑓𝑓(𝑥𝑥) = �

(−1)2𝑘𝑘−1𝑥𝑥2𝑘𝑘+1

𝑘𝑘(2𝑘𝑘 − 1)!

∞

𝑘𝑘=1

11
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥3𝑘𝑘−1

(𝑘𝑘)! (𝑘𝑘 + 2)

∞

𝑘𝑘=1

26
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥𝑘𝑘+3

(𝑘𝑘 + 1)! (2𝑘𝑘)

∞

𝑘𝑘=1

12
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥3𝑘𝑘−1

(3𝑘𝑘)! (𝑘𝑘 + 3)

∞

𝑘𝑘=1

27
𝑓𝑓(𝑥𝑥) = �

(−1)3𝑘𝑘−1𝑥𝑥3𝑘𝑘−1

2𝑘𝑘(𝑘𝑘 + 3)!

∞

𝑘𝑘=1

13
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥3𝑘𝑘+1

3𝑘𝑘(𝑘𝑘 + 1)!

∞

𝑘𝑘=1

28
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥3𝑘𝑘−1

(2𝑘𝑘)!

∞

𝑘𝑘=1

14
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2(𝑘𝑘+1)

(𝑘𝑘)! (𝑘𝑘 + 2)

∞

𝑘𝑘=1

29
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘𝑥𝑥2(𝑘𝑘+1)

(2𝑘𝑘 + 3)!

∞

𝑘𝑘=1

15
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘+1𝑥𝑥3(𝑘𝑘−2)

(𝑘𝑘 + 3)(3𝑘𝑘)!

∞

𝑘𝑘=1

30
𝑓𝑓(𝑥𝑥) = �

(−1)𝑘𝑘−1𝑥𝑥2𝑘𝑘−1

2𝑘𝑘+1(𝑘𝑘 + 1)!

∞

𝑘𝑘=1

92

Instructions for completing the Task 4

Example 1. Calculate by formula

𝑓𝑓(𝑥𝑥) = �
(−1)𝑘𝑘𝑥𝑥𝑘𝑘

(𝑘𝑘 + 1)! (𝑘𝑘 + 2)

∞

𝑘𝑘=1

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

//𝑓𝑓(𝑥𝑥)=∑1_(𝑘𝑘=1)^Т▒(〖(−1)〗^𝑘𝑘 𝑥𝑥^𝑘𝑘)/((𝑘𝑘+2)(𝑘𝑘+1)!)

int main()

{

 int t,N, f=1,k;

 float y,x,q;

 y=0;

 printf("\n\tinput x ");

 scanf("%f",&x);

k=1;

 do

 {

 f=1;

 for(t=1;t<=k+1;t++)

 {f=f*t;

 }

 q=pow((-1),k)*pow(x,k)/((k+2)*f) ;

 printf("\n q [%d]=%f ",k,q);

y=y+q;

 k++;

 }while(fabs(q)>0.0001);

printf(“y=%f”,y);

return 0;

}

93

Example 2.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

//𝑓𝑓(𝑥𝑥)=∑1_(𝑘𝑘=1)^Т▒(〖(−1)〗^𝑘𝑘 𝑥𝑥^𝑘𝑘)/((𝑘𝑘+2)(𝑘𝑘+1)!)

int main()

{

 int t,N, f=1,T,k;

 float y,x,q;

 y=0;

printf("\n\tinput x ");

 scanf("%f",&x);

q=(-1)*x/((1+2)*(1*2)) ;

 k=2;

y=y+q;

94

 printf("\n q[1]=%f",q);

while (fabs(q)>0.0001)

 {

 f=1;t=1;

 while (t<=k+1)

 {f=f*t;

 t++;}

 q=pow((-1),k)*pow(x,k)/((k+2)*f) ;

 printf("\n q[%d]=%f",k,q);

y=y+q;

k++;

}

 printf("\n y=%f",y);

 printf("\n\n\n\n");

 return 0;

}

95

Example 3.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

//𝑓𝑓(𝑥𝑥)=∑1_(𝑘𝑘=1)^Т▒(〖(−1)〗^𝑘𝑘 𝑥𝑥^𝑘𝑘)/((𝑘𝑘+2)(𝑘𝑘+1)!)

int main()

{

 int t,N, f=1,k;

 float y,x,q;

 y=0;

 printf("\n\tinput x ");

 scanf("%f",&x);

for (k=1; ;k++)

 {

f=1;t=1;

while (t<=k+1)

 {f=f*t;

 t++;}

q=pow((-1),k)*pow(x,k)/((k+2)*f) ;

 printf("\n q[%d]=%.12f",k,q);

y=y+q;

}

 printf("\n y=%f",y);

 printf("\n\n\n\n");

 return 0;

}

96

97

TASK 5. Create program with one-dimension array

1. Given an array of numbers. Find the value of the maximum element. If

there are more than one element, then determine how many of them.

2. Given an array of numbers. Find how many pairs of identical adjasted

elements.

3. Fill an array of 10 elements with random integers. Arrange the array in

ascending order. Find the sum of odd elements of the array, display the

results.

4. Fill an array of integers with random 14 elements. Sort the array in

ascending order. Display maximum and minimum elements, find their

difference.

5. Fill an array of integers with random 10 elements. Arrange the array in

ascending order. Calculate the number and product of the elements of the

array, greater than 20 and less than 50 and display the result.

6. Fill an array of integers with random 13 elements. Sort the array in

descending order. Calculate the number and sum of elements of the array

greater than 10. Display the result.

7. Fill an array of integers with random 10 elements. Arrange the array in

ascending order. Calculate the number and sum of elements of the array,

which are divisible by 5 without remainder.

8. Fill an array of integers with random 15 elements. Sort the array in

descending order. Calculate the sum of the elements of the array, which are

multiples of 3 and display the result.

9. Fill an array of integers with random 12 elements. Sort the array in

ascending order. Find the number and sum of even elements of the array

and display the result.

10. Given an array of numbers. Find the value of the minimum element. If

there are more than one element, then determine how many of them.

98

11. Given an array of numbers. Sort it in descending order. Find the average

value of the elements of the array that is greater than 30.

12. Fill an array of integers with random 10 elements. Sort the array in

descending order. Find the sum of squares of odd elements of the array and

display the results.

13. Fill an array of integers with random N elements. Make a mirror image of

the elements relative to the middle of the array. It's not allowed to use

additional arrays.

14. Fill an array of integers with random N elements. Find the largest and

smallest element of the array and swap them. If there are several maximum

or minimum elements, it is not necessary to swap the maximum and

minimum elements of the array.

15. Fill an array of integers with random 13 elements. Sort the array in

descending order. Calculate the number and sum of elements of an array

greater than 10. Display the result.

16. Fill an array of integers with random 10 elements. Sort the array in

ascending order. Calculate the number and sum of elements of the array,

which are divisible by 5 without remainder.

17. Fill an array of integers with random N elements. Sort the array in

descending order. Calculate the sum of the squares of the elements of the

array and display the result.

18. Fill an array of integers with random 12 elements. Sort the array in

ascending order. Find the number and sum of even elements of the array,

display the result.

19. Given an array of numbers. Find the value of the minimum element. If

there are more than one element, then determine how many of them.

20. Fill an array of float with random 10 elements. Arrange the array in

ascending order. Calculate the number and product of the elements of the

array, greater than 5 and less than 10 and display the result

99

21. Given an array of numbers. Sort it in descending order of absolute values

of array elements.

22. Fill an array of integers with random 10 elements. Sort the array in

descending order. Find the sum of squares of odd elements of the array and

display the results.

23. An array of size N is given. Display the elements of the array located

between its minimum and maximum elements.

24. Given an array of numbers. Sort it in ascending order. Find the arithmetic

mean of the elements of the array.

25. Enter an array of integers with 10 elements from the keyboard. Sort the

array in ascending order. Find the sum of squares of even elements of the

array and display the results.

26. Given an array of numbers. Find the value of the minimum element. If

there are more than one element, then determine how many of them.

27. Fill an array of integers with random 15 elements. Sort the array in

descending order. Calculate the number and sum of elements of the array

greater than 12. Display the result.

28. Fill an array of integers with random 18 elements. Calculate the number

and product of elements of the array smallest than 10. Display the result.

29. Given an array of numbers. Sort it in descending order of absolute values

of array elements.

30. Fill an array of integers with random 9 elements. Arrange the array in

ascending order. Calculate the number and sum of elements of the array,

which are divisible by 3 without remainder.

100

Instructions for completing the Task 4

Example 1. Filling the array with random numbers and output result

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

 int main()

{

int i,n;

float x;

float A[10];

printf(“Input quantity elements of array ");

scanf("%d",&n);

srand(time(NULL));

 for (i=0;i<n;i++)

 {

 x=(float)(rand()%9)/24; // fractional part of a number

 A[i]= rand()%100+x; // random integers from 0 to 99 + fractional part x

}

printf("_________________________________\n");

 for (i=0;i<n;i++)

printf(" %5.2f",A[i]);

return 0;

}

101

Example 2. Search for the minimum element in the one-dimension array

#include <stdio.h>

int main ()

{

int Arr[100];

int i,N,min;

printf(“Input quantity elements of array ");

scanf("%d",&N);

printf (" Input array by %d: elements\n",N);

for (i=0; i<N;i++) scanf("%d",&Arr[i]);

printf ("array :\n");

 for (i=0; i<N;i++) printf("%4d",Arr[i]);

min=Arr[0];

for (i=1; i <N; i++)

if (min>Arr[i]) min=Arr[i];

 printf("\nMin=%d",min);

return 0;

}

102

Example 3. Search for the last maximum element in the one-dimension array

#include <stdio.h>

int main ()

{

int Arr[100];

int i,N,max,maxi;

printf(“Input quantity elements of array ");

scanf("%d",&N);

printf (" Input array by %d elements\n",N);

for (i=0; i<N;i++)

scanf("%d",&Arr[i]);

printf ("array :\n");

 for (i=0; i<N;i++) printf("%4d",Arr[i]);

max=Arr[0];maxi=0;

for (i=1; i <N; i++)

if (max<=Arr[i]) {max=Arr[i];maxi=i;}

 printf("\nMax=A[%d]=%d",maxi,max);

return 0;

}

103

104

TASK 6. Using of functions

Write a variant solution program with the obligatory use of functions to describe

the actions that must be repeated, namely:

- input of array elements;

- output of array elements;

- execution on the array of actions specified in the variant.

1. Given three arrays of integers A [10], B [12], C [8] and an integer M. When

sequentially viewing the elements from the beginning of the arrays to find in each

of them the number of elements exceeding a given number M.

2. Given three arrays of real numbers A [8], B [15], C [10]. Divide all the elements

of the array by its minimum element.

3. Given three matrices of integers A [7], B [7], C [7]. Assign the variable p a value

of 2 if all matrices are equal to each other, a value of 1 if any two matrices are

equal, 0 - otherwise.

4. Given two matrices of integers A [10], B [12]. Calculate each of these items that

are more than 15 and have an odd index.

5. Given two matrices of integers A [10], B [12]. Calculate each of these items that

are less than 15 and have an even index.

6. Given three matrices of integers A [5], B [7], C [10]. In each of them find all the

maximum elements and replace them with 0.

7. Given three arrays of integers A [12], B [10], C [7]. In each of them, find the sum

of the elements placed after the first negative element

8. Given three arrays of integers A [9], B [11], C [13]. In each of them find the sum

of the elements placed after the first 0

9. Given three arrays of integers A [4], B [13], C [8]. In each of them find the product

of the elements placed before the first 0

10. Given three arrays of integers A [10], B [12], C [14]. In each of them find all the

minimum elements and replace them 1.

105

11. Given three arrays of real numbers X [9], Y [16], Z [12]. In each of these arrays,

replace the elements with indexes divided to 3 by 5

12. Given three arrays of real numbers X [12], Y [14], Z [10]. In each of these array

elements even replace 0

13. Given three arrays of real numbers X [9], Y [11], Z [15]. In each of these arrays,

replace the odd elements with 1

14. Given three arrays of integers A [17], B [8], C [12] and integer K. Calculate in each

array the sum of the elements that belong to the element with number K.

15. Given three arrays of integers A [11], B [10], C [14] and an integer K. Calculate in

each array the product of the elements following the element with number K

16. Given three arrays of integers A [11], B [14], C [12] .Each array in descending

order

17. Given three arrays of integers A [10], B [7], C [13]. Perform in each of them a

cyclic shift of the elements to the right by 1 position.

18. Given three arrays of integers A [12], B [5], C [9]. Perform in each of them a cyclic

shift of the elements to the left by 1 position.

19. Given three arrays of integers A [11], B [10], C [14]. If the first element of the

array is negative, then calculate the sum of the elements, otherwise the product of

all elements.

20. Given three arrays of integers A [11], B [10], C [14]. If the first element of the

array is 0, then calculate the sum of the elements, otherwise - return 0

21. Given three matrices of integers A [7][4], B [6][5], C [6][8]. Calculate the sum of

the elements separately in each row of the given matrices.

22. Given three matrices of integers A [5][4], B [5][5], C [6][7]. Calculate the sum of

the elements separately in each column of the given matrices.

23. Given three matrices of integers A [5][5], B [4][6], C [7][3]. In each of them find

all the maximum elements and replace them with zeros.

24. Given three matrices of integers A [3][4], B [7][2], C [4][6]. In each of them find

all the minimum elements and replace them with 1.

106

25. Given two matrices of integers A [4][7], B [7][4]. Swap the first column with the

last and output result

26. Given two matrices of integers A [3][7], B [2][5]. Find the sum of elements in each

row and output result

27. Given two matrices of integers A [3][7], B [2][5]. Find the sum of elements in each

column and output result

28. Given two matrices of integers A [5][6], B [3][4]. Swap the first row with the last

and output result

29. Given three arrays of integers A [10], B [12], C [8] and an integer T. When

sequentially viewing the elements from the end of the array to find an element that

exceeds the given T.

30. Given three arrays of integers A [16], B [15], C [17]. Each array in descending

order

Instructions for completing the Task 6

Example. There are three arrays of real (float) numbers A[8], B[13], C[10].

Divide all elements of the array by its maximum element

#include <stdio.h>

void InputArray (const N,float X[N]);

void OutArray (const N,float X[N]);

void modifyArray(const N,float X[N],float max_array);

int main ()

{

float A[8];

float B[13];

float C[10];

float max_array;

 printf ("Input Array A \n");

 InputArray(8,A);

OutArray(8,A);

107

modifyArray(8,A,max_array);

printf ("\n\nInput Array B \n");

 InputArray(13,B);

OutArray(13,B);

modifyArray(13,B,max_array);

 printf ("\n\nInput Array C \n");

 InputArray(10,C);

OutArray(10,C);

modifyArray(10,C,max_array);

return 0;

}

void InputArray (const N,float X[N])

 {

 int i;

 for (i=0; i <N; i++)

 {

 printf("\nEnter element of array %d ",i+1);

 scanf("%f",&X[i]);

 }

 }

void OutArray (const N,float X[N])

 {

 int i;

 printf("\nArray\n");

 for (i=0; i <N; i++)

 printf("%.3f ",X[i]);

 }

void modifyArray(const int N, float X[N],float max_array)

{

 int i;

108

 max_array=X[0];

 for(i = 0; i <N; i++)

 {

 if (max_array<X[i]) max_array=X[i];

 }

 printf("\nMax element %f ",max_array);

 printf("\nModify array\n");

for(i = 0; i <N; i++)

 {

 if (max_array==0) {printf("\nError\n"); break;}

 X[i]=X[i]/max_array;

 printf("%.3f ",X[i]);

 }

}

109

110

Example 2.

Enter a two-dimensional array from the keyboard.

 Find the first negative and last positive on the main diagonal of the matrix

and display their positions on the screen

#include <stdio.h>

#include <stdlib.h>

#define K 3

#define P 4

void input (int AA[K][P],int k,int p){

 int i,j;

 for (i = 0; i < k; i++) {

 for (j = 0; j < p; j++) {

 printf("A[%d][%d]",i,j);

 scanf("%d",&AA[i][j]);

 }

 }

 }

void output (int AA[K][P],int k, int p){

 int i,j;

 for (i = 0; i < k; i++) {

 for (j = 0; j < p; j++) {

 printf("%d\t ",AA[i][j]);

 } printf("\n");

 }

 }

void SearchArr(int AA[K][P],int k, int p){

 int i,j,bp=-1,bn=-1;

111

 int pos,neg;

 for (i = 0; i < k; i++){

if (AA[i][i]>0){ pos=AA[i][i]; bp=i;}}

for (i = 0; i < k; i++){

if (AA[i][i]<0) {neg=AA[i][i]; bn=i;} break;}

/*for (i = n-1; i >=0; i--){

if (AA[i][i]<0) {neg=AA[i][i]; bn=i;} }*/

if(bn!=-1) printf("\nFirst negative element= %d, position i=%d,

j=%d",neg,bn,bn);

 else printf("\nElement is error!");

 if(bp!=-1) printf("\nLast positive element= %d, position i=%d,

j=%d",pos,bp,bp);

 else printf("\nElement is error!");

}

int main () {

int A[10][10];

srand(time(NULL));

input (A,K,P);

printf ("The value of the original array\n");

output (A,K,P);

printf("\n");

SearchArr (A,K,P);

return 0;

}

112

113

APPENDIX A

RESERVED WORDS

Keywords of С

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

114

APPENDIX B

115

116

SOURSES

1. Stewart, Bill (7 січня 2000). History of the C Programming Language.

2. Patricia K. Lawlis, c.j. kemp systems, inc. (1997). Guidelines for Choosing a

Computer Language: Support for the Visionary Organization. Ada Information

Clearinghouse.

3. Programming Language Popularity. 2009.

4. TIOBE Programming Community Index. 2009.

5. Bjarne Stroustrup. FAQ (англ.).

6. Ritchie, Dennis. The Development of the C Language.

7. Brian W. Kernighan and Dennis M. Ritchie: The C Programming

Language, 2nd ed.,

8. King, K.N. (2008). C Programming: A Modern Approach (2 ed.). W. W.

Norton.

9. Gustedt, Jens (2019). Modern C (2 ed.). Manning.

10. C Programming Absolute Beginner's Guide 3rd Edition by Greg Perry, Dean

Miller, 2013

11. https://www.programiz.com/c-programming

12. https://www.tutorialspoint.com/cprogramming/index.htm

13. https://www.cprogramming.com/

https://www.webcitation.org/67yahbjPg?url=http://www.langpop.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://web.archive.org/web/20080617183013/http:/www.research.att.com/%7Ebs/bs_faq.html#really-say-that
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Greg+Perry&text=Greg+Perry&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Dean+Miller&text=Dean+Miller&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Dean+Miller&text=Dean+Miller&sort=relevancerank&search-alias=books
https://www.programiz.com/c-programming
https://www.tutorialspoint.com/cprogramming/index.htm
http://www.cprogramming.com/
http://www.cprogramming.com/

	INTRODUCTION

